ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqoddm1div8 GIF version

Theorem sqoddm1div8 10437
Description: A squared odd number minus 1 divided by 8 is the odd number multiplied with its successor divided by 2. (Contributed by AV, 19-Jul-2021.)
Assertion
Ref Expression
sqoddm1div8 ((𝑁 ∈ ℤ ∧ 𝑀 = ((2 · 𝑁) + 1)) → (((𝑀↑2) − 1) / 8) = ((𝑁 · (𝑁 + 1)) / 2))

Proof of Theorem sqoddm1div8
StepHypRef Expression
1 oveq1 5774 . . . . . 6 (𝑀 = ((2 · 𝑁) + 1) → (𝑀↑2) = (((2 · 𝑁) + 1)↑2))
2 2z 9075 . . . . . . . . . 10 2 ∈ ℤ
32a1i 9 . . . . . . . . 9 (𝑁 ∈ ℤ → 2 ∈ ℤ)
4 id 19 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℤ)
53, 4zmulcld 9172 . . . . . . . 8 (𝑁 ∈ ℤ → (2 · 𝑁) ∈ ℤ)
65zcnd 9167 . . . . . . 7 (𝑁 ∈ ℤ → (2 · 𝑁) ∈ ℂ)
7 binom21 10397 . . . . . . 7 ((2 · 𝑁) ∈ ℂ → (((2 · 𝑁) + 1)↑2) = ((((2 · 𝑁)↑2) + (2 · (2 · 𝑁))) + 1))
86, 7syl 14 . . . . . 6 (𝑁 ∈ ℤ → (((2 · 𝑁) + 1)↑2) = ((((2 · 𝑁)↑2) + (2 · (2 · 𝑁))) + 1))
91, 8sylan9eqr 2192 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 = ((2 · 𝑁) + 1)) → (𝑀↑2) = ((((2 · 𝑁)↑2) + (2 · (2 · 𝑁))) + 1))
109oveq1d 5782 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 = ((2 · 𝑁) + 1)) → ((𝑀↑2) − 1) = (((((2 · 𝑁)↑2) + (2 · (2 · 𝑁))) + 1) − 1))
11 2cnd 8786 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 2 ∈ ℂ)
12 zcn 9052 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
1311, 12sqmuld 10429 . . . . . . . . . 10 (𝑁 ∈ ℤ → ((2 · 𝑁)↑2) = ((2↑2) · (𝑁↑2)))
14 sq2 10381 . . . . . . . . . . . 12 (2↑2) = 4
1514a1i 9 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (2↑2) = 4)
1615oveq1d 5782 . . . . . . . . . 10 (𝑁 ∈ ℤ → ((2↑2) · (𝑁↑2)) = (4 · (𝑁↑2)))
1713, 16eqtrd 2170 . . . . . . . . 9 (𝑁 ∈ ℤ → ((2 · 𝑁)↑2) = (4 · (𝑁↑2)))
18 mulass 7744 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ 2 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((2 · 2) · 𝑁) = (2 · (2 · 𝑁)))
1918eqcomd 2143 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ 2 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (2 · (2 · 𝑁)) = ((2 · 2) · 𝑁))
2011, 11, 12, 19syl3anc 1216 . . . . . . . . . 10 (𝑁 ∈ ℤ → (2 · (2 · 𝑁)) = ((2 · 2) · 𝑁))
21 2t2e4 8867 . . . . . . . . . . . 12 (2 · 2) = 4
2221a1i 9 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (2 · 2) = 4)
2322oveq1d 5782 . . . . . . . . . 10 (𝑁 ∈ ℤ → ((2 · 2) · 𝑁) = (4 · 𝑁))
2420, 23eqtrd 2170 . . . . . . . . 9 (𝑁 ∈ ℤ → (2 · (2 · 𝑁)) = (4 · 𝑁))
2517, 24oveq12d 5785 . . . . . . . 8 (𝑁 ∈ ℤ → (((2 · 𝑁)↑2) + (2 · (2 · 𝑁))) = ((4 · (𝑁↑2)) + (4 · 𝑁)))
2625oveq1d 5782 . . . . . . 7 (𝑁 ∈ ℤ → ((((2 · 𝑁)↑2) + (2 · (2 · 𝑁))) + 1) = (((4 · (𝑁↑2)) + (4 · 𝑁)) + 1))
2726oveq1d 5782 . . . . . 6 (𝑁 ∈ ℤ → (((((2 · 𝑁)↑2) + (2 · (2 · 𝑁))) + 1) − 1) = ((((4 · (𝑁↑2)) + (4 · 𝑁)) + 1) − 1))
28 4z 9077 . . . . . . . . . . 11 4 ∈ ℤ
2928a1i 9 . . . . . . . . . 10 (𝑁 ∈ ℤ → 4 ∈ ℤ)
30 zsqcl 10356 . . . . . . . . . 10 (𝑁 ∈ ℤ → (𝑁↑2) ∈ ℤ)
3129, 30zmulcld 9172 . . . . . . . . 9 (𝑁 ∈ ℤ → (4 · (𝑁↑2)) ∈ ℤ)
3231zcnd 9167 . . . . . . . 8 (𝑁 ∈ ℤ → (4 · (𝑁↑2)) ∈ ℂ)
3329, 4zmulcld 9172 . . . . . . . . 9 (𝑁 ∈ ℤ → (4 · 𝑁) ∈ ℤ)
3433zcnd 9167 . . . . . . . 8 (𝑁 ∈ ℤ → (4 · 𝑁) ∈ ℂ)
3532, 34addcld 7778 . . . . . . 7 (𝑁 ∈ ℤ → ((4 · (𝑁↑2)) + (4 · 𝑁)) ∈ ℂ)
36 pncan1 8132 . . . . . . 7 (((4 · (𝑁↑2)) + (4 · 𝑁)) ∈ ℂ → ((((4 · (𝑁↑2)) + (4 · 𝑁)) + 1) − 1) = ((4 · (𝑁↑2)) + (4 · 𝑁)))
3735, 36syl 14 . . . . . 6 (𝑁 ∈ ℤ → ((((4 · (𝑁↑2)) + (4 · 𝑁)) + 1) − 1) = ((4 · (𝑁↑2)) + (4 · 𝑁)))
3827, 37eqtrd 2170 . . . . 5 (𝑁 ∈ ℤ → (((((2 · 𝑁)↑2) + (2 · (2 · 𝑁))) + 1) − 1) = ((4 · (𝑁↑2)) + (4 · 𝑁)))
3938adantr 274 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 = ((2 · 𝑁) + 1)) → (((((2 · 𝑁)↑2) + (2 · (2 · 𝑁))) + 1) − 1) = ((4 · (𝑁↑2)) + (4 · 𝑁)))
4010, 39eqtrd 2170 . . 3 ((𝑁 ∈ ℤ ∧ 𝑀 = ((2 · 𝑁) + 1)) → ((𝑀↑2) − 1) = ((4 · (𝑁↑2)) + (4 · 𝑁)))
4140oveq1d 5782 . 2 ((𝑁 ∈ ℤ ∧ 𝑀 = ((2 · 𝑁) + 1)) → (((𝑀↑2) − 1) / 8) = (((4 · (𝑁↑2)) + (4 · 𝑁)) / 8))
42 4cn 8791 . . . . . . 7 4 ∈ ℂ
4342a1i 9 . . . . . 6 (𝑁 ∈ ℤ → 4 ∈ ℂ)
4430zcnd 9167 . . . . . 6 (𝑁 ∈ ℤ → (𝑁↑2) ∈ ℂ)
4543, 44, 12adddid 7783 . . . . 5 (𝑁 ∈ ℤ → (4 · ((𝑁↑2) + 𝑁)) = ((4 · (𝑁↑2)) + (4 · 𝑁)))
4645eqcomd 2143 . . . 4 (𝑁 ∈ ℤ → ((4 · (𝑁↑2)) + (4 · 𝑁)) = (4 · ((𝑁↑2) + 𝑁)))
4746oveq1d 5782 . . 3 (𝑁 ∈ ℤ → (((4 · (𝑁↑2)) + (4 · 𝑁)) / 8) = ((4 · ((𝑁↑2) + 𝑁)) / 8))
4847adantr 274 . 2 ((𝑁 ∈ ℤ ∧ 𝑀 = ((2 · 𝑁) + 1)) → (((4 · (𝑁↑2)) + (4 · 𝑁)) / 8) = ((4 · ((𝑁↑2) + 𝑁)) / 8))
49 4t2e8 8871 . . . . . . 7 (4 · 2) = 8
5049a1i 9 . . . . . 6 (𝑁 ∈ ℤ → (4 · 2) = 8)
5150eqcomd 2143 . . . . 5 (𝑁 ∈ ℤ → 8 = (4 · 2))
5251oveq2d 5783 . . . 4 (𝑁 ∈ ℤ → ((4 · ((𝑁↑2) + 𝑁)) / 8) = ((4 · ((𝑁↑2) + 𝑁)) / (4 · 2)))
5330, 4zaddcld 9170 . . . . . 6 (𝑁 ∈ ℤ → ((𝑁↑2) + 𝑁) ∈ ℤ)
5453zcnd 9167 . . . . 5 (𝑁 ∈ ℤ → ((𝑁↑2) + 𝑁) ∈ ℂ)
55 2ap0 8806 . . . . . 6 2 # 0
5655a1i 9 . . . . 5 (𝑁 ∈ ℤ → 2 # 0)
57 4ap0 8812 . . . . . 6 4 # 0
5857a1i 9 . . . . 5 (𝑁 ∈ ℤ → 4 # 0)
5954, 11, 43, 56, 58divcanap5d 8570 . . . 4 (𝑁 ∈ ℤ → ((4 · ((𝑁↑2) + 𝑁)) / (4 · 2)) = (((𝑁↑2) + 𝑁) / 2))
6012sqvald 10414 . . . . . . 7 (𝑁 ∈ ℤ → (𝑁↑2) = (𝑁 · 𝑁))
6160oveq1d 5782 . . . . . 6 (𝑁 ∈ ℤ → ((𝑁↑2) + 𝑁) = ((𝑁 · 𝑁) + 𝑁))
6212mulid1d 7776 . . . . . . . 8 (𝑁 ∈ ℤ → (𝑁 · 1) = 𝑁)
6362eqcomd 2143 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 = (𝑁 · 1))
6463oveq2d 5783 . . . . . 6 (𝑁 ∈ ℤ → ((𝑁 · 𝑁) + 𝑁) = ((𝑁 · 𝑁) + (𝑁 · 1)))
65 1cnd 7775 . . . . . . 7 (𝑁 ∈ ℤ → 1 ∈ ℂ)
66 adddi 7745 . . . . . . . 8 ((𝑁 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑁 · (𝑁 + 1)) = ((𝑁 · 𝑁) + (𝑁 · 1)))
6766eqcomd 2143 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 · 𝑁) + (𝑁 · 1)) = (𝑁 · (𝑁 + 1)))
6812, 12, 65, 67syl3anc 1216 . . . . . 6 (𝑁 ∈ ℤ → ((𝑁 · 𝑁) + (𝑁 · 1)) = (𝑁 · (𝑁 + 1)))
6961, 64, 683eqtrd 2174 . . . . 5 (𝑁 ∈ ℤ → ((𝑁↑2) + 𝑁) = (𝑁 · (𝑁 + 1)))
7069oveq1d 5782 . . . 4 (𝑁 ∈ ℤ → (((𝑁↑2) + 𝑁) / 2) = ((𝑁 · (𝑁 + 1)) / 2))
7152, 59, 703eqtrd 2174 . . 3 (𝑁 ∈ ℤ → ((4 · ((𝑁↑2) + 𝑁)) / 8) = ((𝑁 · (𝑁 + 1)) / 2))
7271adantr 274 . 2 ((𝑁 ∈ ℤ ∧ 𝑀 = ((2 · 𝑁) + 1)) → ((4 · ((𝑁↑2) + 𝑁)) / 8) = ((𝑁 · (𝑁 + 1)) / 2))
7341, 48, 723eqtrd 2174 1 ((𝑁 ∈ ℤ ∧ 𝑀 = ((2 · 𝑁) + 1)) → (((𝑀↑2) − 1) / 8) = ((𝑁 · (𝑁 + 1)) / 2))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 962   = wceq 1331  wcel 1480   class class class wbr 3924  (class class class)co 5767  cc 7611  0cc0 7613  1c1 7614   + caddc 7616   · cmul 7618  cmin 7926   # cap 8336   / cdiv 8425  2c2 8764  4c4 8766  8c8 8770  cz 9047  cexp 10285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-frec 6281  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-2 8772  df-3 8773  df-4 8774  df-5 8775  df-6 8776  df-7 8777  df-8 8778  df-n0 8971  df-z 9048  df-uz 9320  df-seqfrec 10212  df-exp 10286
This theorem is referenced by:  sqoddm1div8z  11572
  Copyright terms: Public domain W3C validator