ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqoddm1div8 GIF version

Theorem sqoddm1div8 10237
Description: A squared odd number minus 1 divided by 8 is the odd number multiplied with its successor divided by 2. (Contributed by AV, 19-Jul-2021.)
Assertion
Ref Expression
sqoddm1div8 ((𝑁 ∈ ℤ ∧ 𝑀 = ((2 · 𝑁) + 1)) → (((𝑀↑2) − 1) / 8) = ((𝑁 · (𝑁 + 1)) / 2))

Proof of Theorem sqoddm1div8
StepHypRef Expression
1 oveq1 5697 . . . . . 6 (𝑀 = ((2 · 𝑁) + 1) → (𝑀↑2) = (((2 · 𝑁) + 1)↑2))
2 2z 8876 . . . . . . . . . 10 2 ∈ ℤ
32a1i 9 . . . . . . . . 9 (𝑁 ∈ ℤ → 2 ∈ ℤ)
4 id 19 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℤ)
53, 4zmulcld 8973 . . . . . . . 8 (𝑁 ∈ ℤ → (2 · 𝑁) ∈ ℤ)
65zcnd 8968 . . . . . . 7 (𝑁 ∈ ℤ → (2 · 𝑁) ∈ ℂ)
7 binom21 10197 . . . . . . 7 ((2 · 𝑁) ∈ ℂ → (((2 · 𝑁) + 1)↑2) = ((((2 · 𝑁)↑2) + (2 · (2 · 𝑁))) + 1))
86, 7syl 14 . . . . . 6 (𝑁 ∈ ℤ → (((2 · 𝑁) + 1)↑2) = ((((2 · 𝑁)↑2) + (2 · (2 · 𝑁))) + 1))
91, 8sylan9eqr 2149 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 = ((2 · 𝑁) + 1)) → (𝑀↑2) = ((((2 · 𝑁)↑2) + (2 · (2 · 𝑁))) + 1))
109oveq1d 5705 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 = ((2 · 𝑁) + 1)) → ((𝑀↑2) − 1) = (((((2 · 𝑁)↑2) + (2 · (2 · 𝑁))) + 1) − 1))
11 2cnd 8593 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 2 ∈ ℂ)
12 zcn 8853 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
1311, 12sqmuld 10229 . . . . . . . . . 10 (𝑁 ∈ ℤ → ((2 · 𝑁)↑2) = ((2↑2) · (𝑁↑2)))
14 sq2 10181 . . . . . . . . . . . 12 (2↑2) = 4
1514a1i 9 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (2↑2) = 4)
1615oveq1d 5705 . . . . . . . . . 10 (𝑁 ∈ ℤ → ((2↑2) · (𝑁↑2)) = (4 · (𝑁↑2)))
1713, 16eqtrd 2127 . . . . . . . . 9 (𝑁 ∈ ℤ → ((2 · 𝑁)↑2) = (4 · (𝑁↑2)))
18 mulass 7570 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ 2 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((2 · 2) · 𝑁) = (2 · (2 · 𝑁)))
1918eqcomd 2100 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ 2 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (2 · (2 · 𝑁)) = ((2 · 2) · 𝑁))
2011, 11, 12, 19syl3anc 1181 . . . . . . . . . 10 (𝑁 ∈ ℤ → (2 · (2 · 𝑁)) = ((2 · 2) · 𝑁))
21 2t2e4 8668 . . . . . . . . . . . 12 (2 · 2) = 4
2221a1i 9 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (2 · 2) = 4)
2322oveq1d 5705 . . . . . . . . . 10 (𝑁 ∈ ℤ → ((2 · 2) · 𝑁) = (4 · 𝑁))
2420, 23eqtrd 2127 . . . . . . . . 9 (𝑁 ∈ ℤ → (2 · (2 · 𝑁)) = (4 · 𝑁))
2517, 24oveq12d 5708 . . . . . . . 8 (𝑁 ∈ ℤ → (((2 · 𝑁)↑2) + (2 · (2 · 𝑁))) = ((4 · (𝑁↑2)) + (4 · 𝑁)))
2625oveq1d 5705 . . . . . . 7 (𝑁 ∈ ℤ → ((((2 · 𝑁)↑2) + (2 · (2 · 𝑁))) + 1) = (((4 · (𝑁↑2)) + (4 · 𝑁)) + 1))
2726oveq1d 5705 . . . . . 6 (𝑁 ∈ ℤ → (((((2 · 𝑁)↑2) + (2 · (2 · 𝑁))) + 1) − 1) = ((((4 · (𝑁↑2)) + (4 · 𝑁)) + 1) − 1))
28 4z 8878 . . . . . . . . . . 11 4 ∈ ℤ
2928a1i 9 . . . . . . . . . 10 (𝑁 ∈ ℤ → 4 ∈ ℤ)
30 zsqcl 10156 . . . . . . . . . 10 (𝑁 ∈ ℤ → (𝑁↑2) ∈ ℤ)
3129, 30zmulcld 8973 . . . . . . . . 9 (𝑁 ∈ ℤ → (4 · (𝑁↑2)) ∈ ℤ)
3231zcnd 8968 . . . . . . . 8 (𝑁 ∈ ℤ → (4 · (𝑁↑2)) ∈ ℂ)
3329, 4zmulcld 8973 . . . . . . . . 9 (𝑁 ∈ ℤ → (4 · 𝑁) ∈ ℤ)
3433zcnd 8968 . . . . . . . 8 (𝑁 ∈ ℤ → (4 · 𝑁) ∈ ℂ)
3532, 34addcld 7604 . . . . . . 7 (𝑁 ∈ ℤ → ((4 · (𝑁↑2)) + (4 · 𝑁)) ∈ ℂ)
36 pncan1 7952 . . . . . . 7 (((4 · (𝑁↑2)) + (4 · 𝑁)) ∈ ℂ → ((((4 · (𝑁↑2)) + (4 · 𝑁)) + 1) − 1) = ((4 · (𝑁↑2)) + (4 · 𝑁)))
3735, 36syl 14 . . . . . 6 (𝑁 ∈ ℤ → ((((4 · (𝑁↑2)) + (4 · 𝑁)) + 1) − 1) = ((4 · (𝑁↑2)) + (4 · 𝑁)))
3827, 37eqtrd 2127 . . . . 5 (𝑁 ∈ ℤ → (((((2 · 𝑁)↑2) + (2 · (2 · 𝑁))) + 1) − 1) = ((4 · (𝑁↑2)) + (4 · 𝑁)))
3938adantr 271 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 = ((2 · 𝑁) + 1)) → (((((2 · 𝑁)↑2) + (2 · (2 · 𝑁))) + 1) − 1) = ((4 · (𝑁↑2)) + (4 · 𝑁)))
4010, 39eqtrd 2127 . . 3 ((𝑁 ∈ ℤ ∧ 𝑀 = ((2 · 𝑁) + 1)) → ((𝑀↑2) − 1) = ((4 · (𝑁↑2)) + (4 · 𝑁)))
4140oveq1d 5705 . 2 ((𝑁 ∈ ℤ ∧ 𝑀 = ((2 · 𝑁) + 1)) → (((𝑀↑2) − 1) / 8) = (((4 · (𝑁↑2)) + (4 · 𝑁)) / 8))
42 4cn 8598 . . . . . . 7 4 ∈ ℂ
4342a1i 9 . . . . . 6 (𝑁 ∈ ℤ → 4 ∈ ℂ)
4430zcnd 8968 . . . . . 6 (𝑁 ∈ ℤ → (𝑁↑2) ∈ ℂ)
4543, 44, 12adddid 7609 . . . . 5 (𝑁 ∈ ℤ → (4 · ((𝑁↑2) + 𝑁)) = ((4 · (𝑁↑2)) + (4 · 𝑁)))
4645eqcomd 2100 . . . 4 (𝑁 ∈ ℤ → ((4 · (𝑁↑2)) + (4 · 𝑁)) = (4 · ((𝑁↑2) + 𝑁)))
4746oveq1d 5705 . . 3 (𝑁 ∈ ℤ → (((4 · (𝑁↑2)) + (4 · 𝑁)) / 8) = ((4 · ((𝑁↑2) + 𝑁)) / 8))
4847adantr 271 . 2 ((𝑁 ∈ ℤ ∧ 𝑀 = ((2 · 𝑁) + 1)) → (((4 · (𝑁↑2)) + (4 · 𝑁)) / 8) = ((4 · ((𝑁↑2) + 𝑁)) / 8))
49 4t2e8 8672 . . . . . . 7 (4 · 2) = 8
5049a1i 9 . . . . . 6 (𝑁 ∈ ℤ → (4 · 2) = 8)
5150eqcomd 2100 . . . . 5 (𝑁 ∈ ℤ → 8 = (4 · 2))
5251oveq2d 5706 . . . 4 (𝑁 ∈ ℤ → ((4 · ((𝑁↑2) + 𝑁)) / 8) = ((4 · ((𝑁↑2) + 𝑁)) / (4 · 2)))
5330, 4zaddcld 8971 . . . . . 6 (𝑁 ∈ ℤ → ((𝑁↑2) + 𝑁) ∈ ℤ)
5453zcnd 8968 . . . . 5 (𝑁 ∈ ℤ → ((𝑁↑2) + 𝑁) ∈ ℂ)
55 2ap0 8613 . . . . . 6 2 # 0
5655a1i 9 . . . . 5 (𝑁 ∈ ℤ → 2 # 0)
57 4ap0 8619 . . . . . 6 4 # 0
5857a1i 9 . . . . 5 (𝑁 ∈ ℤ → 4 # 0)
5954, 11, 43, 56, 58divcanap5d 8381 . . . 4 (𝑁 ∈ ℤ → ((4 · ((𝑁↑2) + 𝑁)) / (4 · 2)) = (((𝑁↑2) + 𝑁) / 2))
6012sqvald 10214 . . . . . . 7 (𝑁 ∈ ℤ → (𝑁↑2) = (𝑁 · 𝑁))
6160oveq1d 5705 . . . . . 6 (𝑁 ∈ ℤ → ((𝑁↑2) + 𝑁) = ((𝑁 · 𝑁) + 𝑁))
6212mulid1d 7602 . . . . . . . 8 (𝑁 ∈ ℤ → (𝑁 · 1) = 𝑁)
6362eqcomd 2100 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 = (𝑁 · 1))
6463oveq2d 5706 . . . . . 6 (𝑁 ∈ ℤ → ((𝑁 · 𝑁) + 𝑁) = ((𝑁 · 𝑁) + (𝑁 · 1)))
65 1cnd 7601 . . . . . . 7 (𝑁 ∈ ℤ → 1 ∈ ℂ)
66 adddi 7571 . . . . . . . 8 ((𝑁 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑁 · (𝑁 + 1)) = ((𝑁 · 𝑁) + (𝑁 · 1)))
6766eqcomd 2100 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 · 𝑁) + (𝑁 · 1)) = (𝑁 · (𝑁 + 1)))
6812, 12, 65, 67syl3anc 1181 . . . . . 6 (𝑁 ∈ ℤ → ((𝑁 · 𝑁) + (𝑁 · 1)) = (𝑁 · (𝑁 + 1)))
6961, 64, 683eqtrd 2131 . . . . 5 (𝑁 ∈ ℤ → ((𝑁↑2) + 𝑁) = (𝑁 · (𝑁 + 1)))
7069oveq1d 5705 . . . 4 (𝑁 ∈ ℤ → (((𝑁↑2) + 𝑁) / 2) = ((𝑁 · (𝑁 + 1)) / 2))
7152, 59, 703eqtrd 2131 . . 3 (𝑁 ∈ ℤ → ((4 · ((𝑁↑2) + 𝑁)) / 8) = ((𝑁 · (𝑁 + 1)) / 2))
7271adantr 271 . 2 ((𝑁 ∈ ℤ ∧ 𝑀 = ((2 · 𝑁) + 1)) → ((4 · ((𝑁↑2) + 𝑁)) / 8) = ((𝑁 · (𝑁 + 1)) / 2))
7341, 48, 723eqtrd 2131 1 ((𝑁 ∈ ℤ ∧ 𝑀 = ((2 · 𝑁) + 1)) → (((𝑀↑2) − 1) / 8) = ((𝑁 · (𝑁 + 1)) / 2))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 927   = wceq 1296  wcel 1445   class class class wbr 3867  (class class class)co 5690  cc 7445  0cc0 7447  1c1 7448   + caddc 7450   · cmul 7452  cmin 7750   # cap 8155   / cdiv 8236  2c2 8571  4c4 8573  8c8 8577  cz 8848  cexp 10085
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-coll 3975  ax-sep 3978  ax-nul 3986  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-iinf 4431  ax-cnex 7533  ax-resscn 7534  ax-1cn 7535  ax-1re 7536  ax-icn 7537  ax-addcl 7538  ax-addrcl 7539  ax-mulcl 7540  ax-mulrcl 7541  ax-addcom 7542  ax-mulcom 7543  ax-addass 7544  ax-mulass 7545  ax-distr 7546  ax-i2m1 7547  ax-0lt1 7548  ax-1rid 7549  ax-0id 7550  ax-rnegex 7551  ax-precex 7552  ax-cnre 7553  ax-pre-ltirr 7554  ax-pre-ltwlin 7555  ax-pre-lttrn 7556  ax-pre-apti 7557  ax-pre-ltadd 7558  ax-pre-mulgt0 7559  ax-pre-mulext 7560
This theorem depends on definitions:  df-bi 116  df-dc 784  df-3or 928  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-nel 2358  df-ral 2375  df-rex 2376  df-reu 2377  df-rmo 2378  df-rab 2379  df-v 2635  df-sbc 2855  df-csb 2948  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-nul 3303  df-if 3414  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-int 3711  df-iun 3754  df-br 3868  df-opab 3922  df-mpt 3923  df-tr 3959  df-id 4144  df-po 4147  df-iso 4148  df-iord 4217  df-on 4219  df-ilim 4220  df-suc 4222  df-iom 4434  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-f1 5054  df-fo 5055  df-f1o 5056  df-fv 5057  df-riota 5646  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-1st 5949  df-2nd 5950  df-recs 6108  df-frec 6194  df-pnf 7621  df-mnf 7622  df-xr 7623  df-ltxr 7624  df-le 7625  df-sub 7752  df-neg 7753  df-reap 8149  df-ap 8156  df-div 8237  df-inn 8521  df-2 8579  df-3 8580  df-4 8581  df-5 8582  df-6 8583  df-7 8584  df-8 8585  df-n0 8772  df-z 8849  df-uz 9119  df-iseq 10002  df-seq3 10003  df-exp 10086
This theorem is referenced by:  sqoddm1div8z  11329
  Copyright terms: Public domain W3C validator