![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > peano5set | GIF version |
Description: Version of peano5 4630 when ω ∩ 𝐴 is assumed to be a set, allowing a proof from the core axioms of CZF. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
peano5set | ⊢ ((ω ∩ 𝐴) ∈ 𝑉 → ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) → ω ⊆ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-omind 15426 | . . . . 5 ⊢ Ind ω | |
2 | bj-indind 15424 | . . . . 5 ⊢ ((Ind ω ∧ (∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴))) → Ind (ω ∩ 𝐴)) | |
3 | 1, 2 | mpan 424 | . . . 4 ⊢ ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) → Ind (ω ∩ 𝐴)) |
4 | bj-omssind 15427 | . . . . 5 ⊢ ((ω ∩ 𝐴) ∈ 𝑉 → (Ind (ω ∩ 𝐴) → ω ⊆ (ω ∩ 𝐴))) | |
5 | 4 | imp 124 | . . . 4 ⊢ (((ω ∩ 𝐴) ∈ 𝑉 ∧ Ind (ω ∩ 𝐴)) → ω ⊆ (ω ∩ 𝐴)) |
6 | 3, 5 | sylan2 286 | . . 3 ⊢ (((ω ∩ 𝐴) ∈ 𝑉 ∧ (∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴))) → ω ⊆ (ω ∩ 𝐴)) |
7 | inss2 3380 | . . 3 ⊢ (ω ∩ 𝐴) ⊆ 𝐴 | |
8 | 6, 7 | sstrdi 3191 | . 2 ⊢ (((ω ∩ 𝐴) ∈ 𝑉 ∧ (∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴))) → ω ⊆ 𝐴) |
9 | 8 | ex 115 | 1 ⊢ ((ω ∩ 𝐴) ∈ 𝑉 → ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) → ω ⊆ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2164 ∀wral 2472 ∩ cin 3152 ⊆ wss 3153 ∅c0 3446 suc csuc 4396 ωcom 4622 Ind wind 15418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-nul 4155 ax-pr 4238 ax-un 4464 ax-bd0 15305 ax-bdor 15308 ax-bdex 15311 ax-bdeq 15312 ax-bdel 15313 ax-bdsb 15314 ax-bdsep 15376 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-sn 3624 df-pr 3625 df-uni 3836 df-int 3871 df-suc 4402 df-iom 4623 df-bdc 15333 df-bj-ind 15419 |
This theorem is referenced by: bdpeano5 15435 speano5 15436 |
Copyright terms: Public domain | W3C validator |