| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > peano5set | GIF version | ||
| Description: Version of peano5 4687 when ω ∩ 𝐴 is assumed to be a set, allowing a proof from the core axioms of CZF. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| peano5set | ⊢ ((ω ∩ 𝐴) ∈ 𝑉 → ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) → ω ⊆ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-omind 16227 | . . . . 5 ⊢ Ind ω | |
| 2 | bj-indind 16225 | . . . . 5 ⊢ ((Ind ω ∧ (∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴))) → Ind (ω ∩ 𝐴)) | |
| 3 | 1, 2 | mpan 424 | . . . 4 ⊢ ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) → Ind (ω ∩ 𝐴)) |
| 4 | bj-omssind 16228 | . . . . 5 ⊢ ((ω ∩ 𝐴) ∈ 𝑉 → (Ind (ω ∩ 𝐴) → ω ⊆ (ω ∩ 𝐴))) | |
| 5 | 4 | imp 124 | . . . 4 ⊢ (((ω ∩ 𝐴) ∈ 𝑉 ∧ Ind (ω ∩ 𝐴)) → ω ⊆ (ω ∩ 𝐴)) |
| 6 | 3, 5 | sylan2 286 | . . 3 ⊢ (((ω ∩ 𝐴) ∈ 𝑉 ∧ (∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴))) → ω ⊆ (ω ∩ 𝐴)) |
| 7 | inss2 3425 | . . 3 ⊢ (ω ∩ 𝐴) ⊆ 𝐴 | |
| 8 | 6, 7 | sstrdi 3236 | . 2 ⊢ (((ω ∩ 𝐴) ∈ 𝑉 ∧ (∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴))) → ω ⊆ 𝐴) |
| 9 | 8 | ex 115 | 1 ⊢ ((ω ∩ 𝐴) ∈ 𝑉 → ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) → ω ⊆ 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2200 ∀wral 2508 ∩ cin 3196 ⊆ wss 3197 ∅c0 3491 suc csuc 4453 ωcom 4679 Ind wind 16219 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-nul 4209 ax-pr 4292 ax-un 4521 ax-bd0 16106 ax-bdor 16109 ax-bdex 16112 ax-bdeq 16113 ax-bdel 16114 ax-bdsb 16115 ax-bdsep 16177 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-sn 3672 df-pr 3673 df-uni 3888 df-int 3923 df-suc 4459 df-iom 4680 df-bdc 16134 df-bj-ind 16220 |
| This theorem is referenced by: bdpeano5 16236 speano5 16237 |
| Copyright terms: Public domain | W3C validator |