![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > peano5set | GIF version |
Description: Version of peano5 4615 when ω ∩ 𝐴 is assumed to be a set, allowing a proof from the core axioms of CZF. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
peano5set | ⊢ ((ω ∩ 𝐴) ∈ 𝑉 → ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) → ω ⊆ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-omind 15139 | . . . . 5 ⊢ Ind ω | |
2 | bj-indind 15137 | . . . . 5 ⊢ ((Ind ω ∧ (∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴))) → Ind (ω ∩ 𝐴)) | |
3 | 1, 2 | mpan 424 | . . . 4 ⊢ ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) → Ind (ω ∩ 𝐴)) |
4 | bj-omssind 15140 | . . . . 5 ⊢ ((ω ∩ 𝐴) ∈ 𝑉 → (Ind (ω ∩ 𝐴) → ω ⊆ (ω ∩ 𝐴))) | |
5 | 4 | imp 124 | . . . 4 ⊢ (((ω ∩ 𝐴) ∈ 𝑉 ∧ Ind (ω ∩ 𝐴)) → ω ⊆ (ω ∩ 𝐴)) |
6 | 3, 5 | sylan2 286 | . . 3 ⊢ (((ω ∩ 𝐴) ∈ 𝑉 ∧ (∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴))) → ω ⊆ (ω ∩ 𝐴)) |
7 | inss2 3371 | . . 3 ⊢ (ω ∩ 𝐴) ⊆ 𝐴 | |
8 | 6, 7 | sstrdi 3182 | . 2 ⊢ (((ω ∩ 𝐴) ∈ 𝑉 ∧ (∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴))) → ω ⊆ 𝐴) |
9 | 8 | ex 115 | 1 ⊢ ((ω ∩ 𝐴) ∈ 𝑉 → ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) → ω ⊆ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2160 ∀wral 2468 ∩ cin 3143 ⊆ wss 3144 ∅c0 3437 suc csuc 4383 ωcom 4607 Ind wind 15131 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-nul 4144 ax-pr 4227 ax-un 4451 ax-bd0 15018 ax-bdor 15021 ax-bdex 15024 ax-bdeq 15025 ax-bdel 15026 ax-bdsb 15027 ax-bdsep 15089 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-rab 2477 df-v 2754 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-sn 3613 df-pr 3614 df-uni 3825 df-int 3860 df-suc 4389 df-iom 4608 df-bdc 15046 df-bj-ind 15132 |
This theorem is referenced by: bdpeano5 15148 speano5 15149 |
Copyright terms: Public domain | W3C validator |