| Mathbox for BJ | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > peano5set | GIF version | ||
| Description: Version of peano5 4634 when ω ∩ 𝐴 is assumed to be a set, allowing a proof from the core axioms of CZF. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.) | 
| Ref | Expression | 
|---|---|
| peano5set | ⊢ ((ω ∩ 𝐴) ∈ 𝑉 → ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) → ω ⊆ 𝐴)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bj-omind 15580 | . . . . 5 ⊢ Ind ω | |
| 2 | bj-indind 15578 | . . . . 5 ⊢ ((Ind ω ∧ (∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴))) → Ind (ω ∩ 𝐴)) | |
| 3 | 1, 2 | mpan 424 | . . . 4 ⊢ ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) → Ind (ω ∩ 𝐴)) | 
| 4 | bj-omssind 15581 | . . . . 5 ⊢ ((ω ∩ 𝐴) ∈ 𝑉 → (Ind (ω ∩ 𝐴) → ω ⊆ (ω ∩ 𝐴))) | |
| 5 | 4 | imp 124 | . . . 4 ⊢ (((ω ∩ 𝐴) ∈ 𝑉 ∧ Ind (ω ∩ 𝐴)) → ω ⊆ (ω ∩ 𝐴)) | 
| 6 | 3, 5 | sylan2 286 | . . 3 ⊢ (((ω ∩ 𝐴) ∈ 𝑉 ∧ (∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴))) → ω ⊆ (ω ∩ 𝐴)) | 
| 7 | inss2 3384 | . . 3 ⊢ (ω ∩ 𝐴) ⊆ 𝐴 | |
| 8 | 6, 7 | sstrdi 3195 | . 2 ⊢ (((ω ∩ 𝐴) ∈ 𝑉 ∧ (∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴))) → ω ⊆ 𝐴) | 
| 9 | 8 | ex 115 | 1 ⊢ ((ω ∩ 𝐴) ∈ 𝑉 → ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) → ω ⊆ 𝐴)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2167 ∀wral 2475 ∩ cin 3156 ⊆ wss 3157 ∅c0 3450 suc csuc 4400 ωcom 4626 Ind wind 15572 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-nul 4159 ax-pr 4242 ax-un 4468 ax-bd0 15459 ax-bdor 15462 ax-bdex 15465 ax-bdeq 15466 ax-bdel 15467 ax-bdsb 15468 ax-bdsep 15530 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-sn 3628 df-pr 3629 df-uni 3840 df-int 3875 df-suc 4406 df-iom 4627 df-bdc 15487 df-bj-ind 15573 | 
| This theorem is referenced by: bdpeano5 15589 speano5 15590 | 
| Copyright terms: Public domain | W3C validator |