ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecopovtrn GIF version

Theorem ecopovtrn 6343
Description: Assuming that operation 𝐹 is commutative (second hypothesis), closed (third hypothesis), associative (fourth hypothesis), and has the cancellation property (fifth hypothesis), show that the relation , specified by the first hypothesis, is transitive. (Contributed by NM, 11-Feb-1996.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
ecopopr.1 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))}
ecopopr.com (𝑥 + 𝑦) = (𝑦 + 𝑥)
ecopopr.cl ((𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) ∈ 𝑆)
ecopopr.ass ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))
ecopopr.can ((𝑥𝑆𝑦𝑆) → ((𝑥 + 𝑦) = (𝑥 + 𝑧) → 𝑦 = 𝑧))
Assertion
Ref Expression
ecopovtrn ((𝐴 𝐵𝐵 𝐶) → 𝐴 𝐶)
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑣,𝑢, +   𝑥,𝑆,𝑦,𝑧,𝑤,𝑣,𝑢
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)   𝐵(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)   𝐶(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)   (𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)

Proof of Theorem ecopovtrn
Dummy variables 𝑓 𝑔 𝑡 𝑠 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ecopopr.1 . . . . . . 7 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))}
2 opabssxp 4482 . . . . . . 7 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))} ⊆ ((𝑆 × 𝑆) × (𝑆 × 𝑆))
31, 2eqsstri 3045 . . . . . 6 ⊆ ((𝑆 × 𝑆) × (𝑆 × 𝑆))
43brel 4460 . . . . 5 (𝐴 𝐵 → (𝐴 ∈ (𝑆 × 𝑆) ∧ 𝐵 ∈ (𝑆 × 𝑆)))
54simpld 110 . . . 4 (𝐴 𝐵𝐴 ∈ (𝑆 × 𝑆))
63brel 4460 . . . 4 (𝐵 𝐶 → (𝐵 ∈ (𝑆 × 𝑆) ∧ 𝐶 ∈ (𝑆 × 𝑆)))
75, 6anim12i 331 . . 3 ((𝐴 𝐵𝐵 𝐶) → (𝐴 ∈ (𝑆 × 𝑆) ∧ (𝐵 ∈ (𝑆 × 𝑆) ∧ 𝐶 ∈ (𝑆 × 𝑆))))
8 3anass 926 . . 3 ((𝐴 ∈ (𝑆 × 𝑆) ∧ 𝐵 ∈ (𝑆 × 𝑆) ∧ 𝐶 ∈ (𝑆 × 𝑆)) ↔ (𝐴 ∈ (𝑆 × 𝑆) ∧ (𝐵 ∈ (𝑆 × 𝑆) ∧ 𝐶 ∈ (𝑆 × 𝑆))))
97, 8sylibr 132 . 2 ((𝐴 𝐵𝐵 𝐶) → (𝐴 ∈ (𝑆 × 𝑆) ∧ 𝐵 ∈ (𝑆 × 𝑆) ∧ 𝐶 ∈ (𝑆 × 𝑆)))
10 eqid 2085 . . 3 (𝑆 × 𝑆) = (𝑆 × 𝑆)
11 breq1 3825 . . . . 5 (⟨𝑓, 𝑔⟩ = 𝐴 → (⟨𝑓, 𝑔, 𝑡⟩ ↔ 𝐴 , 𝑡⟩))
1211anbi1d 453 . . . 4 (⟨𝑓, 𝑔⟩ = 𝐴 → ((⟨𝑓, 𝑔, 𝑡⟩ ∧ ⟨, 𝑡𝑠, 𝑟⟩) ↔ (𝐴 , 𝑡⟩ ∧ ⟨, 𝑡𝑠, 𝑟⟩)))
13 breq1 3825 . . . 4 (⟨𝑓, 𝑔⟩ = 𝐴 → (⟨𝑓, 𝑔𝑠, 𝑟⟩ ↔ 𝐴 𝑠, 𝑟⟩))
1412, 13imbi12d 232 . . 3 (⟨𝑓, 𝑔⟩ = 𝐴 → (((⟨𝑓, 𝑔, 𝑡⟩ ∧ ⟨, 𝑡𝑠, 𝑟⟩) → ⟨𝑓, 𝑔𝑠, 𝑟⟩) ↔ ((𝐴 , 𝑡⟩ ∧ ⟨, 𝑡𝑠, 𝑟⟩) → 𝐴 𝑠, 𝑟⟩)))
15 breq2 3826 . . . . 5 (⟨, 𝑡⟩ = 𝐵 → (𝐴 , 𝑡⟩ ↔ 𝐴 𝐵))
16 breq1 3825 . . . . 5 (⟨, 𝑡⟩ = 𝐵 → (⟨, 𝑡𝑠, 𝑟⟩ ↔ 𝐵 𝑠, 𝑟⟩))
1715, 16anbi12d 457 . . . 4 (⟨, 𝑡⟩ = 𝐵 → ((𝐴 , 𝑡⟩ ∧ ⟨, 𝑡𝑠, 𝑟⟩) ↔ (𝐴 𝐵𝐵 𝑠, 𝑟⟩)))
1817imbi1d 229 . . 3 (⟨, 𝑡⟩ = 𝐵 → (((𝐴 , 𝑡⟩ ∧ ⟨, 𝑡𝑠, 𝑟⟩) → 𝐴 𝑠, 𝑟⟩) ↔ ((𝐴 𝐵𝐵 𝑠, 𝑟⟩) → 𝐴 𝑠, 𝑟⟩)))
19 breq2 3826 . . . . 5 (⟨𝑠, 𝑟⟩ = 𝐶 → (𝐵 𝑠, 𝑟⟩ ↔ 𝐵 𝐶))
2019anbi2d 452 . . . 4 (⟨𝑠, 𝑟⟩ = 𝐶 → ((𝐴 𝐵𝐵 𝑠, 𝑟⟩) ↔ (𝐴 𝐵𝐵 𝐶)))
21 breq2 3826 . . . 4 (⟨𝑠, 𝑟⟩ = 𝐶 → (𝐴 𝑠, 𝑟⟩ ↔ 𝐴 𝐶))
2220, 21imbi12d 232 . . 3 (⟨𝑠, 𝑟⟩ = 𝐶 → (((𝐴 𝐵𝐵 𝑠, 𝑟⟩) → 𝐴 𝑠, 𝑟⟩) ↔ ((𝐴 𝐵𝐵 𝐶) → 𝐴 𝐶)))
231ecopoveq 6341 . . . . . . . 8 (((𝑓𝑆𝑔𝑆) ∧ (𝑆𝑡𝑆)) → (⟨𝑓, 𝑔, 𝑡⟩ ↔ (𝑓 + 𝑡) = (𝑔 + )))
24233adant3 961 . . . . . . 7 (((𝑓𝑆𝑔𝑆) ∧ (𝑆𝑡𝑆) ∧ (𝑠𝑆𝑟𝑆)) → (⟨𝑓, 𝑔, 𝑡⟩ ↔ (𝑓 + 𝑡) = (𝑔 + )))
251ecopoveq 6341 . . . . . . . 8 (((𝑆𝑡𝑆) ∧ (𝑠𝑆𝑟𝑆)) → (⟨, 𝑡𝑠, 𝑟⟩ ↔ ( + 𝑟) = (𝑡 + 𝑠)))
26253adant1 959 . . . . . . 7 (((𝑓𝑆𝑔𝑆) ∧ (𝑆𝑡𝑆) ∧ (𝑠𝑆𝑟𝑆)) → (⟨, 𝑡𝑠, 𝑟⟩ ↔ ( + 𝑟) = (𝑡 + 𝑠)))
2724, 26anbi12d 457 . . . . . 6 (((𝑓𝑆𝑔𝑆) ∧ (𝑆𝑡𝑆) ∧ (𝑠𝑆𝑟𝑆)) → ((⟨𝑓, 𝑔, 𝑡⟩ ∧ ⟨, 𝑡𝑠, 𝑟⟩) ↔ ((𝑓 + 𝑡) = (𝑔 + ) ∧ ( + 𝑟) = (𝑡 + 𝑠))))
28 oveq12 5624 . . . . . . 7 (((𝑓 + 𝑡) = (𝑔 + ) ∧ ( + 𝑟) = (𝑡 + 𝑠)) → ((𝑓 + 𝑡) + ( + 𝑟)) = ((𝑔 + ) + (𝑡 + 𝑠)))
29 simp2l 967 . . . . . . . . 9 (((𝑓𝑆𝑔𝑆) ∧ (𝑆𝑡𝑆) ∧ (𝑠𝑆𝑟𝑆)) → 𝑆)
30 simp2r 968 . . . . . . . . 9 (((𝑓𝑆𝑔𝑆) ∧ (𝑆𝑡𝑆) ∧ (𝑠𝑆𝑟𝑆)) → 𝑡𝑆)
31 simp1l 965 . . . . . . . . 9 (((𝑓𝑆𝑔𝑆) ∧ (𝑆𝑡𝑆) ∧ (𝑠𝑆𝑟𝑆)) → 𝑓𝑆)
32 ecopopr.com . . . . . . . . . 10 (𝑥 + 𝑦) = (𝑦 + 𝑥)
3332a1i 9 . . . . . . . . 9 ((((𝑓𝑆𝑔𝑆) ∧ (𝑆𝑡𝑆) ∧ (𝑠𝑆𝑟𝑆)) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
34 ecopopr.ass . . . . . . . . . 10 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))
3534a1i 9 . . . . . . . . 9 ((((𝑓𝑆𝑔𝑆) ∧ (𝑆𝑡𝑆) ∧ (𝑠𝑆𝑟𝑆)) ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
36 simp3r 970 . . . . . . . . 9 (((𝑓𝑆𝑔𝑆) ∧ (𝑆𝑡𝑆) ∧ (𝑠𝑆𝑟𝑆)) → 𝑟𝑆)
37 ecopopr.cl . . . . . . . . . 10 ((𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) ∈ 𝑆)
3837adantl 271 . . . . . . . . 9 ((((𝑓𝑆𝑔𝑆) ∧ (𝑆𝑡𝑆) ∧ (𝑠𝑆𝑟𝑆)) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
3929, 30, 31, 33, 35, 36, 38caov411d 5789 . . . . . . . 8 (((𝑓𝑆𝑔𝑆) ∧ (𝑆𝑡𝑆) ∧ (𝑠𝑆𝑟𝑆)) → (( + 𝑡) + (𝑓 + 𝑟)) = ((𝑓 + 𝑡) + ( + 𝑟)))
40 simp1r 966 . . . . . . . . . 10 (((𝑓𝑆𝑔𝑆) ∧ (𝑆𝑡𝑆) ∧ (𝑠𝑆𝑟𝑆)) → 𝑔𝑆)
41 simp3l 969 . . . . . . . . . 10 (((𝑓𝑆𝑔𝑆) ∧ (𝑆𝑡𝑆) ∧ (𝑠𝑆𝑟𝑆)) → 𝑠𝑆)
4240, 30, 29, 33, 35, 41, 38caov411d 5789 . . . . . . . . 9 (((𝑓𝑆𝑔𝑆) ∧ (𝑆𝑡𝑆) ∧ (𝑠𝑆𝑟𝑆)) → ((𝑔 + 𝑡) + ( + 𝑠)) = (( + 𝑡) + (𝑔 + 𝑠)))
4340, 30, 29, 33, 35, 41, 38caov4d 5788 . . . . . . . . 9 (((𝑓𝑆𝑔𝑆) ∧ (𝑆𝑡𝑆) ∧ (𝑠𝑆𝑟𝑆)) → ((𝑔 + 𝑡) + ( + 𝑠)) = ((𝑔 + ) + (𝑡 + 𝑠)))
4442, 43eqtr3d 2119 . . . . . . . 8 (((𝑓𝑆𝑔𝑆) ∧ (𝑆𝑡𝑆) ∧ (𝑠𝑆𝑟𝑆)) → (( + 𝑡) + (𝑔 + 𝑠)) = ((𝑔 + ) + (𝑡 + 𝑠)))
4539, 44eqeq12d 2099 . . . . . . 7 (((𝑓𝑆𝑔𝑆) ∧ (𝑆𝑡𝑆) ∧ (𝑠𝑆𝑟𝑆)) → ((( + 𝑡) + (𝑓 + 𝑟)) = (( + 𝑡) + (𝑔 + 𝑠)) ↔ ((𝑓 + 𝑡) + ( + 𝑟)) = ((𝑔 + ) + (𝑡 + 𝑠))))
4628, 45syl5ibr 154 . . . . . 6 (((𝑓𝑆𝑔𝑆) ∧ (𝑆𝑡𝑆) ∧ (𝑠𝑆𝑟𝑆)) → (((𝑓 + 𝑡) = (𝑔 + ) ∧ ( + 𝑟) = (𝑡 + 𝑠)) → (( + 𝑡) + (𝑓 + 𝑟)) = (( + 𝑡) + (𝑔 + 𝑠))))
4727, 46sylbid 148 . . . . 5 (((𝑓𝑆𝑔𝑆) ∧ (𝑆𝑡𝑆) ∧ (𝑠𝑆𝑟𝑆)) → ((⟨𝑓, 𝑔, 𝑡⟩ ∧ ⟨, 𝑡𝑠, 𝑟⟩) → (( + 𝑡) + (𝑓 + 𝑟)) = (( + 𝑡) + (𝑔 + 𝑠))))
48 ecopopr.can . . . . . . . . 9 ((𝑥𝑆𝑦𝑆) → ((𝑥 + 𝑦) = (𝑥 + 𝑧) → 𝑦 = 𝑧))
49483adant3 961 . . . . . . . 8 ((𝑥𝑆𝑦𝑆𝑧𝑆) → ((𝑥 + 𝑦) = (𝑥 + 𝑧) → 𝑦 = 𝑧))
50 oveq2 5623 . . . . . . . 8 (𝑦 = 𝑧 → (𝑥 + 𝑦) = (𝑥 + 𝑧))
5149, 50impbid1 140 . . . . . . 7 ((𝑥𝑆𝑦𝑆𝑧𝑆) → ((𝑥 + 𝑦) = (𝑥 + 𝑧) ↔ 𝑦 = 𝑧))
5251adantl 271 . . . . . 6 ((((𝑓𝑆𝑔𝑆) ∧ (𝑆𝑡𝑆) ∧ (𝑠𝑆𝑟𝑆)) ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) = (𝑥 + 𝑧) ↔ 𝑦 = 𝑧))
5337caovcl 5758 . . . . . . 7 ((𝑆𝑡𝑆) → ( + 𝑡) ∈ 𝑆)
5429, 30, 53syl2anc 403 . . . . . 6 (((𝑓𝑆𝑔𝑆) ∧ (𝑆𝑡𝑆) ∧ (𝑠𝑆𝑟𝑆)) → ( + 𝑡) ∈ 𝑆)
5537caovcl 5758 . . . . . . 7 ((𝑓𝑆𝑟𝑆) → (𝑓 + 𝑟) ∈ 𝑆)
5631, 36, 55syl2anc 403 . . . . . 6 (((𝑓𝑆𝑔𝑆) ∧ (𝑆𝑡𝑆) ∧ (𝑠𝑆𝑟𝑆)) → (𝑓 + 𝑟) ∈ 𝑆)
5738, 40, 41caovcld 5757 . . . . . 6 (((𝑓𝑆𝑔𝑆) ∧ (𝑆𝑡𝑆) ∧ (𝑠𝑆𝑟𝑆)) → (𝑔 + 𝑠) ∈ 𝑆)
5852, 54, 56, 57caovcand 5766 . . . . 5 (((𝑓𝑆𝑔𝑆) ∧ (𝑆𝑡𝑆) ∧ (𝑠𝑆𝑟𝑆)) → ((( + 𝑡) + (𝑓 + 𝑟)) = (( + 𝑡) + (𝑔 + 𝑠)) ↔ (𝑓 + 𝑟) = (𝑔 + 𝑠)))
5947, 58sylibd 147 . . . 4 (((𝑓𝑆𝑔𝑆) ∧ (𝑆𝑡𝑆) ∧ (𝑠𝑆𝑟𝑆)) → ((⟨𝑓, 𝑔, 𝑡⟩ ∧ ⟨, 𝑡𝑠, 𝑟⟩) → (𝑓 + 𝑟) = (𝑔 + 𝑠)))
601ecopoveq 6341 . . . . 5 (((𝑓𝑆𝑔𝑆) ∧ (𝑠𝑆𝑟𝑆)) → (⟨𝑓, 𝑔𝑠, 𝑟⟩ ↔ (𝑓 + 𝑟) = (𝑔 + 𝑠)))
61603adant2 960 . . . 4 (((𝑓𝑆𝑔𝑆) ∧ (𝑆𝑡𝑆) ∧ (𝑠𝑆𝑟𝑆)) → (⟨𝑓, 𝑔𝑠, 𝑟⟩ ↔ (𝑓 + 𝑟) = (𝑔 + 𝑠)))
6259, 61sylibrd 167 . . 3 (((𝑓𝑆𝑔𝑆) ∧ (𝑆𝑡𝑆) ∧ (𝑠𝑆𝑟𝑆)) → ((⟨𝑓, 𝑔, 𝑡⟩ ∧ ⟨, 𝑡𝑠, 𝑟⟩) → ⟨𝑓, 𝑔𝑠, 𝑟⟩))
6310, 14, 18, 22, 623optocl 4486 . 2 ((𝐴 ∈ (𝑆 × 𝑆) ∧ 𝐵 ∈ (𝑆 × 𝑆) ∧ 𝐶 ∈ (𝑆 × 𝑆)) → ((𝐴 𝐵𝐵 𝐶) → 𝐴 𝐶))
649, 63mpcom 36 1 ((𝐴 𝐵𝐵 𝐶) → 𝐴 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3a 922   = wceq 1287  wex 1424  wcel 1436  cop 3434   class class class wbr 3822  {copab 3875   × cxp 4411  (class class class)co 5615
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3934  ax-pow 3986  ax-pr 4012
This theorem depends on definitions:  df-bi 115  df-3an 924  df-tru 1290  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ral 2360  df-rex 2361  df-v 2617  df-un 2992  df-in 2994  df-ss 3001  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3639  df-br 3823  df-opab 3877  df-xp 4419  df-iota 4948  df-fv 4991  df-ov 5618
This theorem is referenced by:  ecopover  6344
  Copyright terms: Public domain W3C validator