Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecopovtrng GIF version

Theorem ecopovtrng 6529
 Description: Assuming that operation 𝐹 is commutative (second hypothesis), closed (third hypothesis), associative (fourth hypothesis), and has the cancellation property (fifth hypothesis), show that the relation ∼, specified by the first hypothesis, is transitive. (Contributed by Jim Kingdon, 1-Sep-2019.)
Hypotheses
Ref Expression
ecopopr.1 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))}
ecopoprg.com ((𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
ecopoprg.cl ((𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) ∈ 𝑆)
ecopoprg.ass ((𝑥𝑆𝑦𝑆𝑧𝑆) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
ecopoprg.can ((𝑥𝑆𝑦𝑆𝑧𝑆) → ((𝑥 + 𝑦) = (𝑥 + 𝑧) → 𝑦 = 𝑧))
Assertion
Ref Expression
ecopovtrng ((𝐴 𝐵𝐵 𝐶) → 𝐴 𝐶)
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑣,𝑢, +   𝑥,𝑆,𝑦,𝑧,𝑤,𝑣,𝑢
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)   𝐵(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)   𝐶(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)   (𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)

Proof of Theorem ecopovtrng
Dummy variables 𝑓 𝑔 𝑡 𝑠 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ecopopr.1 . . . . . . 7 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))}
2 opabssxp 4613 . . . . . . 7 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))} ⊆ ((𝑆 × 𝑆) × (𝑆 × 𝑆))
31, 2eqsstri 3129 . . . . . 6 ⊆ ((𝑆 × 𝑆) × (𝑆 × 𝑆))
43brel 4591 . . . . 5 (𝐴 𝐵 → (𝐴 ∈ (𝑆 × 𝑆) ∧ 𝐵 ∈ (𝑆 × 𝑆)))
54simpld 111 . . . 4 (𝐴 𝐵𝐴 ∈ (𝑆 × 𝑆))
63brel 4591 . . . 4 (𝐵 𝐶 → (𝐵 ∈ (𝑆 × 𝑆) ∧ 𝐶 ∈ (𝑆 × 𝑆)))
75, 6anim12i 336 . . 3 ((𝐴 𝐵𝐵 𝐶) → (𝐴 ∈ (𝑆 × 𝑆) ∧ (𝐵 ∈ (𝑆 × 𝑆) ∧ 𝐶 ∈ (𝑆 × 𝑆))))
8 3anass 966 . . 3 ((𝐴 ∈ (𝑆 × 𝑆) ∧ 𝐵 ∈ (𝑆 × 𝑆) ∧ 𝐶 ∈ (𝑆 × 𝑆)) ↔ (𝐴 ∈ (𝑆 × 𝑆) ∧ (𝐵 ∈ (𝑆 × 𝑆) ∧ 𝐶 ∈ (𝑆 × 𝑆))))
97, 8sylibr 133 . 2 ((𝐴 𝐵𝐵 𝐶) → (𝐴 ∈ (𝑆 × 𝑆) ∧ 𝐵 ∈ (𝑆 × 𝑆) ∧ 𝐶 ∈ (𝑆 × 𝑆)))
10 eqid 2139 . . 3 (𝑆 × 𝑆) = (𝑆 × 𝑆)
11 breq1 3932 . . . . 5 (⟨𝑓, 𝑔⟩ = 𝐴 → (⟨𝑓, 𝑔, 𝑡⟩ ↔ 𝐴 , 𝑡⟩))
1211anbi1d 460 . . . 4 (⟨𝑓, 𝑔⟩ = 𝐴 → ((⟨𝑓, 𝑔, 𝑡⟩ ∧ ⟨, 𝑡𝑠, 𝑟⟩) ↔ (𝐴 , 𝑡⟩ ∧ ⟨, 𝑡𝑠, 𝑟⟩)))
13 breq1 3932 . . . 4 (⟨𝑓, 𝑔⟩ = 𝐴 → (⟨𝑓, 𝑔𝑠, 𝑟⟩ ↔ 𝐴 𝑠, 𝑟⟩))
1412, 13imbi12d 233 . . 3 (⟨𝑓, 𝑔⟩ = 𝐴 → (((⟨𝑓, 𝑔, 𝑡⟩ ∧ ⟨, 𝑡𝑠, 𝑟⟩) → ⟨𝑓, 𝑔𝑠, 𝑟⟩) ↔ ((𝐴 , 𝑡⟩ ∧ ⟨, 𝑡𝑠, 𝑟⟩) → 𝐴 𝑠, 𝑟⟩)))
15 breq2 3933 . . . . 5 (⟨, 𝑡⟩ = 𝐵 → (𝐴 , 𝑡⟩ ↔ 𝐴 𝐵))
16 breq1 3932 . . . . 5 (⟨, 𝑡⟩ = 𝐵 → (⟨, 𝑡𝑠, 𝑟⟩ ↔ 𝐵 𝑠, 𝑟⟩))
1715, 16anbi12d 464 . . . 4 (⟨, 𝑡⟩ = 𝐵 → ((𝐴 , 𝑡⟩ ∧ ⟨, 𝑡𝑠, 𝑟⟩) ↔ (𝐴 𝐵𝐵 𝑠, 𝑟⟩)))
1817imbi1d 230 . . 3 (⟨, 𝑡⟩ = 𝐵 → (((𝐴 , 𝑡⟩ ∧ ⟨, 𝑡𝑠, 𝑟⟩) → 𝐴 𝑠, 𝑟⟩) ↔ ((𝐴 𝐵𝐵 𝑠, 𝑟⟩) → 𝐴 𝑠, 𝑟⟩)))
19 breq2 3933 . . . . 5 (⟨𝑠, 𝑟⟩ = 𝐶 → (𝐵 𝑠, 𝑟⟩ ↔ 𝐵 𝐶))
2019anbi2d 459 . . . 4 (⟨𝑠, 𝑟⟩ = 𝐶 → ((𝐴 𝐵𝐵 𝑠, 𝑟⟩) ↔ (𝐴 𝐵𝐵 𝐶)))
21 breq2 3933 . . . 4 (⟨𝑠, 𝑟⟩ = 𝐶 → (𝐴 𝑠, 𝑟⟩ ↔ 𝐴 𝐶))
2220, 21imbi12d 233 . . 3 (⟨𝑠, 𝑟⟩ = 𝐶 → (((𝐴 𝐵𝐵 𝑠, 𝑟⟩) → 𝐴 𝑠, 𝑟⟩) ↔ ((𝐴 𝐵𝐵 𝐶) → 𝐴 𝐶)))
231ecopoveq 6524 . . . . . . . 8 (((𝑓𝑆𝑔𝑆) ∧ (𝑆𝑡𝑆)) → (⟨𝑓, 𝑔, 𝑡⟩ ↔ (𝑓 + 𝑡) = (𝑔 + )))
24233adant3 1001 . . . . . . 7 (((𝑓𝑆𝑔𝑆) ∧ (𝑆𝑡𝑆) ∧ (𝑠𝑆𝑟𝑆)) → (⟨𝑓, 𝑔, 𝑡⟩ ↔ (𝑓 + 𝑡) = (𝑔 + )))
251ecopoveq 6524 . . . . . . . 8 (((𝑆𝑡𝑆) ∧ (𝑠𝑆𝑟𝑆)) → (⟨, 𝑡𝑠, 𝑟⟩ ↔ ( + 𝑟) = (𝑡 + 𝑠)))
26253adant1 999 . . . . . . 7 (((𝑓𝑆𝑔𝑆) ∧ (𝑆𝑡𝑆) ∧ (𝑠𝑆𝑟𝑆)) → (⟨, 𝑡𝑠, 𝑟⟩ ↔ ( + 𝑟) = (𝑡 + 𝑠)))
2724, 26anbi12d 464 . . . . . 6 (((𝑓𝑆𝑔𝑆) ∧ (𝑆𝑡𝑆) ∧ (𝑠𝑆𝑟𝑆)) → ((⟨𝑓, 𝑔, 𝑡⟩ ∧ ⟨, 𝑡𝑠, 𝑟⟩) ↔ ((𝑓 + 𝑡) = (𝑔 + ) ∧ ( + 𝑟) = (𝑡 + 𝑠))))
28 oveq12 5783 . . . . . . 7 (((𝑓 + 𝑡) = (𝑔 + ) ∧ ( + 𝑟) = (𝑡 + 𝑠)) → ((𝑓 + 𝑡) + ( + 𝑟)) = ((𝑔 + ) + (𝑡 + 𝑠)))
29 simp2l 1007 . . . . . . . . 9 (((𝑓𝑆𝑔𝑆) ∧ (𝑆𝑡𝑆) ∧ (𝑠𝑆𝑟𝑆)) → 𝑆)
30 simp2r 1008 . . . . . . . . 9 (((𝑓𝑆𝑔𝑆) ∧ (𝑆𝑡𝑆) ∧ (𝑠𝑆𝑟𝑆)) → 𝑡𝑆)
31 simp1l 1005 . . . . . . . . 9 (((𝑓𝑆𝑔𝑆) ∧ (𝑆𝑡𝑆) ∧ (𝑠𝑆𝑟𝑆)) → 𝑓𝑆)
32 ecopoprg.com . . . . . . . . . 10 ((𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
3332adantl 275 . . . . . . . . 9 ((((𝑓𝑆𝑔𝑆) ∧ (𝑆𝑡𝑆) ∧ (𝑠𝑆𝑟𝑆)) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
34 ecopoprg.ass . . . . . . . . . 10 ((𝑥𝑆𝑦𝑆𝑧𝑆) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
3534adantl 275 . . . . . . . . 9 ((((𝑓𝑆𝑔𝑆) ∧ (𝑆𝑡𝑆) ∧ (𝑠𝑆𝑟𝑆)) ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
36 simp3r 1010 . . . . . . . . 9 (((𝑓𝑆𝑔𝑆) ∧ (𝑆𝑡𝑆) ∧ (𝑠𝑆𝑟𝑆)) → 𝑟𝑆)
37 ecopoprg.cl . . . . . . . . . 10 ((𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) ∈ 𝑆)
3837adantl 275 . . . . . . . . 9 ((((𝑓𝑆𝑔𝑆) ∧ (𝑆𝑡𝑆) ∧ (𝑠𝑆𝑟𝑆)) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
3929, 30, 31, 33, 35, 36, 38caov411d 5956 . . . . . . . 8 (((𝑓𝑆𝑔𝑆) ∧ (𝑆𝑡𝑆) ∧ (𝑠𝑆𝑟𝑆)) → (( + 𝑡) + (𝑓 + 𝑟)) = ((𝑓 + 𝑡) + ( + 𝑟)))
40 simp1r 1006 . . . . . . . . . 10 (((𝑓𝑆𝑔𝑆) ∧ (𝑆𝑡𝑆) ∧ (𝑠𝑆𝑟𝑆)) → 𝑔𝑆)
41 simp3l 1009 . . . . . . . . . 10 (((𝑓𝑆𝑔𝑆) ∧ (𝑆𝑡𝑆) ∧ (𝑠𝑆𝑟𝑆)) → 𝑠𝑆)
4240, 30, 29, 33, 35, 41, 38caov411d 5956 . . . . . . . . 9 (((𝑓𝑆𝑔𝑆) ∧ (𝑆𝑡𝑆) ∧ (𝑠𝑆𝑟𝑆)) → ((𝑔 + 𝑡) + ( + 𝑠)) = (( + 𝑡) + (𝑔 + 𝑠)))
4340, 30, 29, 33, 35, 41, 38caov4d 5955 . . . . . . . . 9 (((𝑓𝑆𝑔𝑆) ∧ (𝑆𝑡𝑆) ∧ (𝑠𝑆𝑟𝑆)) → ((𝑔 + 𝑡) + ( + 𝑠)) = ((𝑔 + ) + (𝑡 + 𝑠)))
4442, 43eqtr3d 2174 . . . . . . . 8 (((𝑓𝑆𝑔𝑆) ∧ (𝑆𝑡𝑆) ∧ (𝑠𝑆𝑟𝑆)) → (( + 𝑡) + (𝑔 + 𝑠)) = ((𝑔 + ) + (𝑡 + 𝑠)))
4539, 44eqeq12d 2154 . . . . . . 7 (((𝑓𝑆𝑔𝑆) ∧ (𝑆𝑡𝑆) ∧ (𝑠𝑆𝑟𝑆)) → ((( + 𝑡) + (𝑓 + 𝑟)) = (( + 𝑡) + (𝑔 + 𝑠)) ↔ ((𝑓 + 𝑡) + ( + 𝑟)) = ((𝑔 + ) + (𝑡 + 𝑠))))
4628, 45syl5ibr 155 . . . . . 6 (((𝑓𝑆𝑔𝑆) ∧ (𝑆𝑡𝑆) ∧ (𝑠𝑆𝑟𝑆)) → (((𝑓 + 𝑡) = (𝑔 + ) ∧ ( + 𝑟) = (𝑡 + 𝑠)) → (( + 𝑡) + (𝑓 + 𝑟)) = (( + 𝑡) + (𝑔 + 𝑠))))
4727, 46sylbid 149 . . . . 5 (((𝑓𝑆𝑔𝑆) ∧ (𝑆𝑡𝑆) ∧ (𝑠𝑆𝑟𝑆)) → ((⟨𝑓, 𝑔, 𝑡⟩ ∧ ⟨, 𝑡𝑠, 𝑟⟩) → (( + 𝑡) + (𝑓 + 𝑟)) = (( + 𝑡) + (𝑔 + 𝑠))))
48 ecopoprg.can . . . . . . . 8 ((𝑥𝑆𝑦𝑆𝑧𝑆) → ((𝑥 + 𝑦) = (𝑥 + 𝑧) → 𝑦 = 𝑧))
49 oveq2 5782 . . . . . . . 8 (𝑦 = 𝑧 → (𝑥 + 𝑦) = (𝑥 + 𝑧))
5048, 49impbid1 141 . . . . . . 7 ((𝑥𝑆𝑦𝑆𝑧𝑆) → ((𝑥 + 𝑦) = (𝑥 + 𝑧) ↔ 𝑦 = 𝑧))
5150adantl 275 . . . . . 6 ((((𝑓𝑆𝑔𝑆) ∧ (𝑆𝑡𝑆) ∧ (𝑠𝑆𝑟𝑆)) ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) = (𝑥 + 𝑧) ↔ 𝑦 = 𝑧))
5237caovcl 5925 . . . . . . 7 ((𝑆𝑡𝑆) → ( + 𝑡) ∈ 𝑆)
5329, 30, 52syl2anc 408 . . . . . 6 (((𝑓𝑆𝑔𝑆) ∧ (𝑆𝑡𝑆) ∧ (𝑠𝑆𝑟𝑆)) → ( + 𝑡) ∈ 𝑆)
5437caovcl 5925 . . . . . . 7 ((𝑓𝑆𝑟𝑆) → (𝑓 + 𝑟) ∈ 𝑆)
5531, 36, 54syl2anc 408 . . . . . 6 (((𝑓𝑆𝑔𝑆) ∧ (𝑆𝑡𝑆) ∧ (𝑠𝑆𝑟𝑆)) → (𝑓 + 𝑟) ∈ 𝑆)
5638, 40, 41caovcld 5924 . . . . . 6 (((𝑓𝑆𝑔𝑆) ∧ (𝑆𝑡𝑆) ∧ (𝑠𝑆𝑟𝑆)) → (𝑔 + 𝑠) ∈ 𝑆)
5751, 53, 55, 56caovcand 5933 . . . . 5 (((𝑓𝑆𝑔𝑆) ∧ (𝑆𝑡𝑆) ∧ (𝑠𝑆𝑟𝑆)) → ((( + 𝑡) + (𝑓 + 𝑟)) = (( + 𝑡) + (𝑔 + 𝑠)) ↔ (𝑓 + 𝑟) = (𝑔 + 𝑠)))
5847, 57sylibd 148 . . . 4 (((𝑓𝑆𝑔𝑆) ∧ (𝑆𝑡𝑆) ∧ (𝑠𝑆𝑟𝑆)) → ((⟨𝑓, 𝑔, 𝑡⟩ ∧ ⟨, 𝑡𝑠, 𝑟⟩) → (𝑓 + 𝑟) = (𝑔 + 𝑠)))
591ecopoveq 6524 . . . . 5 (((𝑓𝑆𝑔𝑆) ∧ (𝑠𝑆𝑟𝑆)) → (⟨𝑓, 𝑔𝑠, 𝑟⟩ ↔ (𝑓 + 𝑟) = (𝑔 + 𝑠)))
60593adant2 1000 . . . 4 (((𝑓𝑆𝑔𝑆) ∧ (𝑆𝑡𝑆) ∧ (𝑠𝑆𝑟𝑆)) → (⟨𝑓, 𝑔𝑠, 𝑟⟩ ↔ (𝑓 + 𝑟) = (𝑔 + 𝑠)))
6158, 60sylibrd 168 . . 3 (((𝑓𝑆𝑔𝑆) ∧ (𝑆𝑡𝑆) ∧ (𝑠𝑆𝑟𝑆)) → ((⟨𝑓, 𝑔, 𝑡⟩ ∧ ⟨, 𝑡𝑠, 𝑟⟩) → ⟨𝑓, 𝑔𝑠, 𝑟⟩))
6210, 14, 18, 22, 613optocl 4617 . 2 ((𝐴 ∈ (𝑆 × 𝑆) ∧ 𝐵 ∈ (𝑆 × 𝑆) ∧ 𝐶 ∈ (𝑆 × 𝑆)) → ((𝐴 𝐵𝐵 𝐶) → 𝐴 𝐶))
639, 62mpcom 36 1 ((𝐴 𝐵𝐵 𝐶) → 𝐴 𝐶)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   ∧ w3a 962   = wceq 1331  ∃wex 1468   ∈ wcel 1480  ⟨cop 3530   class class class wbr 3929  {copab 3988   × cxp 4537  (class class class)co 5774 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131 This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-xp 4545  df-iota 5088  df-fv 5131  df-ov 5777 This theorem is referenced by:  ecopoverg  6530
 Copyright terms: Public domain W3C validator