Step | Hyp | Ref
| Expression |
1 | | ecopopr.1 |
. . . . . . 7
⊢ ∼ =
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))} |
2 | | opabssxp 4678 |
. . . . . . 7
⊢
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))} ⊆ ((𝑆 × 𝑆) × (𝑆 × 𝑆)) |
3 | 1, 2 | eqsstri 3174 |
. . . . . 6
⊢ ∼
⊆ ((𝑆 × 𝑆) × (𝑆 × 𝑆)) |
4 | 3 | brel 4656 |
. . . . 5
⊢ (𝐴 ∼ 𝐵 → (𝐴 ∈ (𝑆 × 𝑆) ∧ 𝐵 ∈ (𝑆 × 𝑆))) |
5 | 4 | simpld 111 |
. . . 4
⊢ (𝐴 ∼ 𝐵 → 𝐴 ∈ (𝑆 × 𝑆)) |
6 | 3 | brel 4656 |
. . . 4
⊢ (𝐵 ∼ 𝐶 → (𝐵 ∈ (𝑆 × 𝑆) ∧ 𝐶 ∈ (𝑆 × 𝑆))) |
7 | 5, 6 | anim12i 336 |
. . 3
⊢ ((𝐴 ∼ 𝐵 ∧ 𝐵 ∼ 𝐶) → (𝐴 ∈ (𝑆 × 𝑆) ∧ (𝐵 ∈ (𝑆 × 𝑆) ∧ 𝐶 ∈ (𝑆 × 𝑆)))) |
8 | | 3anass 972 |
. . 3
⊢ ((𝐴 ∈ (𝑆 × 𝑆) ∧ 𝐵 ∈ (𝑆 × 𝑆) ∧ 𝐶 ∈ (𝑆 × 𝑆)) ↔ (𝐴 ∈ (𝑆 × 𝑆) ∧ (𝐵 ∈ (𝑆 × 𝑆) ∧ 𝐶 ∈ (𝑆 × 𝑆)))) |
9 | 7, 8 | sylibr 133 |
. 2
⊢ ((𝐴 ∼ 𝐵 ∧ 𝐵 ∼ 𝐶) → (𝐴 ∈ (𝑆 × 𝑆) ∧ 𝐵 ∈ (𝑆 × 𝑆) ∧ 𝐶 ∈ (𝑆 × 𝑆))) |
10 | | eqid 2165 |
. . 3
⊢ (𝑆 × 𝑆) = (𝑆 × 𝑆) |
11 | | breq1 3985 |
. . . . 5
⊢
(〈𝑓, 𝑔〉 = 𝐴 → (〈𝑓, 𝑔〉 ∼ 〈ℎ, 𝑡〉 ↔ 𝐴 ∼ 〈ℎ, 𝑡〉)) |
12 | 11 | anbi1d 461 |
. . . 4
⊢
(〈𝑓, 𝑔〉 = 𝐴 → ((〈𝑓, 𝑔〉 ∼ 〈ℎ, 𝑡〉 ∧ 〈ℎ, 𝑡〉 ∼ 〈𝑠, 𝑟〉) ↔ (𝐴 ∼ 〈ℎ, 𝑡〉 ∧ 〈ℎ, 𝑡〉 ∼ 〈𝑠, 𝑟〉))) |
13 | | breq1 3985 |
. . . 4
⊢
(〈𝑓, 𝑔〉 = 𝐴 → (〈𝑓, 𝑔〉 ∼ 〈𝑠, 𝑟〉 ↔ 𝐴 ∼ 〈𝑠, 𝑟〉)) |
14 | 12, 13 | imbi12d 233 |
. . 3
⊢
(〈𝑓, 𝑔〉 = 𝐴 → (((〈𝑓, 𝑔〉 ∼ 〈ℎ, 𝑡〉 ∧ 〈ℎ, 𝑡〉 ∼ 〈𝑠, 𝑟〉) → 〈𝑓, 𝑔〉 ∼ 〈𝑠, 𝑟〉) ↔ ((𝐴 ∼ 〈ℎ, 𝑡〉 ∧ 〈ℎ, 𝑡〉 ∼ 〈𝑠, 𝑟〉) → 𝐴 ∼ 〈𝑠, 𝑟〉))) |
15 | | breq2 3986 |
. . . . 5
⊢
(〈ℎ, 𝑡〉 = 𝐵 → (𝐴 ∼ 〈ℎ, 𝑡〉 ↔ 𝐴 ∼ 𝐵)) |
16 | | breq1 3985 |
. . . . 5
⊢
(〈ℎ, 𝑡〉 = 𝐵 → (〈ℎ, 𝑡〉 ∼ 〈𝑠, 𝑟〉 ↔ 𝐵 ∼ 〈𝑠, 𝑟〉)) |
17 | 15, 16 | anbi12d 465 |
. . . 4
⊢
(〈ℎ, 𝑡〉 = 𝐵 → ((𝐴 ∼ 〈ℎ, 𝑡〉 ∧ 〈ℎ, 𝑡〉 ∼ 〈𝑠, 𝑟〉) ↔ (𝐴 ∼ 𝐵 ∧ 𝐵 ∼ 〈𝑠, 𝑟〉))) |
18 | 17 | imbi1d 230 |
. . 3
⊢
(〈ℎ, 𝑡〉 = 𝐵 → (((𝐴 ∼ 〈ℎ, 𝑡〉 ∧ 〈ℎ, 𝑡〉 ∼ 〈𝑠, 𝑟〉) → 𝐴 ∼ 〈𝑠, 𝑟〉) ↔ ((𝐴 ∼ 𝐵 ∧ 𝐵 ∼ 〈𝑠, 𝑟〉) → 𝐴 ∼ 〈𝑠, 𝑟〉))) |
19 | | breq2 3986 |
. . . . 5
⊢
(〈𝑠, 𝑟〉 = 𝐶 → (𝐵 ∼ 〈𝑠, 𝑟〉 ↔ 𝐵 ∼ 𝐶)) |
20 | 19 | anbi2d 460 |
. . . 4
⊢
(〈𝑠, 𝑟〉 = 𝐶 → ((𝐴 ∼ 𝐵 ∧ 𝐵 ∼ 〈𝑠, 𝑟〉) ↔ (𝐴 ∼ 𝐵 ∧ 𝐵 ∼ 𝐶))) |
21 | | breq2 3986 |
. . . 4
⊢
(〈𝑠, 𝑟〉 = 𝐶 → (𝐴 ∼ 〈𝑠, 𝑟〉 ↔ 𝐴 ∼ 𝐶)) |
22 | 20, 21 | imbi12d 233 |
. . 3
⊢
(〈𝑠, 𝑟〉 = 𝐶 → (((𝐴 ∼ 𝐵 ∧ 𝐵 ∼ 〈𝑠, 𝑟〉) → 𝐴 ∼ 〈𝑠, 𝑟〉) ↔ ((𝐴 ∼ 𝐵 ∧ 𝐵 ∼ 𝐶) → 𝐴 ∼ 𝐶))) |
23 | 1 | ecopoveq 6596 |
. . . . . . . 8
⊢ (((𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑆) ∧ (ℎ ∈ 𝑆 ∧ 𝑡 ∈ 𝑆)) → (〈𝑓, 𝑔〉 ∼ 〈ℎ, 𝑡〉 ↔ (𝑓 + 𝑡) = (𝑔 + ℎ))) |
24 | 23 | 3adant3 1007 |
. . . . . . 7
⊢ (((𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑆) ∧ (ℎ ∈ 𝑆 ∧ 𝑡 ∈ 𝑆) ∧ (𝑠 ∈ 𝑆 ∧ 𝑟 ∈ 𝑆)) → (〈𝑓, 𝑔〉 ∼ 〈ℎ, 𝑡〉 ↔ (𝑓 + 𝑡) = (𝑔 + ℎ))) |
25 | 1 | ecopoveq 6596 |
. . . . . . . 8
⊢ (((ℎ ∈ 𝑆 ∧ 𝑡 ∈ 𝑆) ∧ (𝑠 ∈ 𝑆 ∧ 𝑟 ∈ 𝑆)) → (〈ℎ, 𝑡〉 ∼ 〈𝑠, 𝑟〉 ↔ (ℎ + 𝑟) = (𝑡 + 𝑠))) |
26 | 25 | 3adant1 1005 |
. . . . . . 7
⊢ (((𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑆) ∧ (ℎ ∈ 𝑆 ∧ 𝑡 ∈ 𝑆) ∧ (𝑠 ∈ 𝑆 ∧ 𝑟 ∈ 𝑆)) → (〈ℎ, 𝑡〉 ∼ 〈𝑠, 𝑟〉 ↔ (ℎ + 𝑟) = (𝑡 + 𝑠))) |
27 | 24, 26 | anbi12d 465 |
. . . . . 6
⊢ (((𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑆) ∧ (ℎ ∈ 𝑆 ∧ 𝑡 ∈ 𝑆) ∧ (𝑠 ∈ 𝑆 ∧ 𝑟 ∈ 𝑆)) → ((〈𝑓, 𝑔〉 ∼ 〈ℎ, 𝑡〉 ∧ 〈ℎ, 𝑡〉 ∼ 〈𝑠, 𝑟〉) ↔ ((𝑓 + 𝑡) = (𝑔 + ℎ) ∧ (ℎ + 𝑟) = (𝑡 + 𝑠)))) |
28 | | oveq12 5851 |
. . . . . . 7
⊢ (((𝑓 + 𝑡) = (𝑔 + ℎ) ∧ (ℎ + 𝑟) = (𝑡 + 𝑠)) → ((𝑓 + 𝑡) + (ℎ + 𝑟)) = ((𝑔 + ℎ) + (𝑡 + 𝑠))) |
29 | | simp2l 1013 |
. . . . . . . . 9
⊢ (((𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑆) ∧ (ℎ ∈ 𝑆 ∧ 𝑡 ∈ 𝑆) ∧ (𝑠 ∈ 𝑆 ∧ 𝑟 ∈ 𝑆)) → ℎ ∈ 𝑆) |
30 | | simp2r 1014 |
. . . . . . . . 9
⊢ (((𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑆) ∧ (ℎ ∈ 𝑆 ∧ 𝑡 ∈ 𝑆) ∧ (𝑠 ∈ 𝑆 ∧ 𝑟 ∈ 𝑆)) → 𝑡 ∈ 𝑆) |
31 | | simp1l 1011 |
. . . . . . . . 9
⊢ (((𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑆) ∧ (ℎ ∈ 𝑆 ∧ 𝑡 ∈ 𝑆) ∧ (𝑠 ∈ 𝑆 ∧ 𝑟 ∈ 𝑆)) → 𝑓 ∈ 𝑆) |
32 | | ecopoprg.com |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
33 | 32 | adantl 275 |
. . . . . . . . 9
⊢ ((((𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑆) ∧ (ℎ ∈ 𝑆 ∧ 𝑡 ∈ 𝑆) ∧ (𝑠 ∈ 𝑆 ∧ 𝑟 ∈ 𝑆)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
34 | | ecopoprg.ass |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
35 | 34 | adantl 275 |
. . . . . . . . 9
⊢ ((((𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑆) ∧ (ℎ ∈ 𝑆 ∧ 𝑡 ∈ 𝑆) ∧ (𝑠 ∈ 𝑆 ∧ 𝑟 ∈ 𝑆)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
36 | | simp3r 1016 |
. . . . . . . . 9
⊢ (((𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑆) ∧ (ℎ ∈ 𝑆 ∧ 𝑡 ∈ 𝑆) ∧ (𝑠 ∈ 𝑆 ∧ 𝑟 ∈ 𝑆)) → 𝑟 ∈ 𝑆) |
37 | | ecopoprg.cl |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) ∈ 𝑆) |
38 | 37 | adantl 275 |
. . . . . . . . 9
⊢ ((((𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑆) ∧ (ℎ ∈ 𝑆 ∧ 𝑡 ∈ 𝑆) ∧ (𝑠 ∈ 𝑆 ∧ 𝑟 ∈ 𝑆)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
39 | 29, 30, 31, 33, 35, 36, 38 | caov411d 6027 |
. . . . . . . 8
⊢ (((𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑆) ∧ (ℎ ∈ 𝑆 ∧ 𝑡 ∈ 𝑆) ∧ (𝑠 ∈ 𝑆 ∧ 𝑟 ∈ 𝑆)) → ((ℎ + 𝑡) + (𝑓 + 𝑟)) = ((𝑓 + 𝑡) + (ℎ + 𝑟))) |
40 | | simp1r 1012 |
. . . . . . . . . 10
⊢ (((𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑆) ∧ (ℎ ∈ 𝑆 ∧ 𝑡 ∈ 𝑆) ∧ (𝑠 ∈ 𝑆 ∧ 𝑟 ∈ 𝑆)) → 𝑔 ∈ 𝑆) |
41 | | simp3l 1015 |
. . . . . . . . . 10
⊢ (((𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑆) ∧ (ℎ ∈ 𝑆 ∧ 𝑡 ∈ 𝑆) ∧ (𝑠 ∈ 𝑆 ∧ 𝑟 ∈ 𝑆)) → 𝑠 ∈ 𝑆) |
42 | 40, 30, 29, 33, 35, 41, 38 | caov411d 6027 |
. . . . . . . . 9
⊢ (((𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑆) ∧ (ℎ ∈ 𝑆 ∧ 𝑡 ∈ 𝑆) ∧ (𝑠 ∈ 𝑆 ∧ 𝑟 ∈ 𝑆)) → ((𝑔 + 𝑡) + (ℎ + 𝑠)) = ((ℎ + 𝑡) + (𝑔 + 𝑠))) |
43 | 40, 30, 29, 33, 35, 41, 38 | caov4d 6026 |
. . . . . . . . 9
⊢ (((𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑆) ∧ (ℎ ∈ 𝑆 ∧ 𝑡 ∈ 𝑆) ∧ (𝑠 ∈ 𝑆 ∧ 𝑟 ∈ 𝑆)) → ((𝑔 + 𝑡) + (ℎ + 𝑠)) = ((𝑔 + ℎ) + (𝑡 + 𝑠))) |
44 | 42, 43 | eqtr3d 2200 |
. . . . . . . 8
⊢ (((𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑆) ∧ (ℎ ∈ 𝑆 ∧ 𝑡 ∈ 𝑆) ∧ (𝑠 ∈ 𝑆 ∧ 𝑟 ∈ 𝑆)) → ((ℎ + 𝑡) + (𝑔 + 𝑠)) = ((𝑔 + ℎ) + (𝑡 + 𝑠))) |
45 | 39, 44 | eqeq12d 2180 |
. . . . . . 7
⊢ (((𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑆) ∧ (ℎ ∈ 𝑆 ∧ 𝑡 ∈ 𝑆) ∧ (𝑠 ∈ 𝑆 ∧ 𝑟 ∈ 𝑆)) → (((ℎ + 𝑡) + (𝑓 + 𝑟)) = ((ℎ + 𝑡) + (𝑔 + 𝑠)) ↔ ((𝑓 + 𝑡) + (ℎ + 𝑟)) = ((𝑔 + ℎ) + (𝑡 + 𝑠)))) |
46 | 28, 45 | syl5ibr 155 |
. . . . . 6
⊢ (((𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑆) ∧ (ℎ ∈ 𝑆 ∧ 𝑡 ∈ 𝑆) ∧ (𝑠 ∈ 𝑆 ∧ 𝑟 ∈ 𝑆)) → (((𝑓 + 𝑡) = (𝑔 + ℎ) ∧ (ℎ + 𝑟) = (𝑡 + 𝑠)) → ((ℎ + 𝑡) + (𝑓 + 𝑟)) = ((ℎ + 𝑡) + (𝑔 + 𝑠)))) |
47 | 27, 46 | sylbid 149 |
. . . . 5
⊢ (((𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑆) ∧ (ℎ ∈ 𝑆 ∧ 𝑡 ∈ 𝑆) ∧ (𝑠 ∈ 𝑆 ∧ 𝑟 ∈ 𝑆)) → ((〈𝑓, 𝑔〉 ∼ 〈ℎ, 𝑡〉 ∧ 〈ℎ, 𝑡〉 ∼ 〈𝑠, 𝑟〉) → ((ℎ + 𝑡) + (𝑓 + 𝑟)) = ((ℎ + 𝑡) + (𝑔 + 𝑠)))) |
48 | | ecopoprg.can |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) → ((𝑥 + 𝑦) = (𝑥 + 𝑧) → 𝑦 = 𝑧)) |
49 | | oveq2 5850 |
. . . . . . . 8
⊢ (𝑦 = 𝑧 → (𝑥 + 𝑦) = (𝑥 + 𝑧)) |
50 | 48, 49 | impbid1 141 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) → ((𝑥 + 𝑦) = (𝑥 + 𝑧) ↔ 𝑦 = 𝑧)) |
51 | 50 | adantl 275 |
. . . . . 6
⊢ ((((𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑆) ∧ (ℎ ∈ 𝑆 ∧ 𝑡 ∈ 𝑆) ∧ (𝑠 ∈ 𝑆 ∧ 𝑟 ∈ 𝑆)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) = (𝑥 + 𝑧) ↔ 𝑦 = 𝑧)) |
52 | 37 | caovcl 5996 |
. . . . . . 7
⊢ ((ℎ ∈ 𝑆 ∧ 𝑡 ∈ 𝑆) → (ℎ + 𝑡) ∈ 𝑆) |
53 | 29, 30, 52 | syl2anc 409 |
. . . . . 6
⊢ (((𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑆) ∧ (ℎ ∈ 𝑆 ∧ 𝑡 ∈ 𝑆) ∧ (𝑠 ∈ 𝑆 ∧ 𝑟 ∈ 𝑆)) → (ℎ + 𝑡) ∈ 𝑆) |
54 | 37 | caovcl 5996 |
. . . . . . 7
⊢ ((𝑓 ∈ 𝑆 ∧ 𝑟 ∈ 𝑆) → (𝑓 + 𝑟) ∈ 𝑆) |
55 | 31, 36, 54 | syl2anc 409 |
. . . . . 6
⊢ (((𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑆) ∧ (ℎ ∈ 𝑆 ∧ 𝑡 ∈ 𝑆) ∧ (𝑠 ∈ 𝑆 ∧ 𝑟 ∈ 𝑆)) → (𝑓 + 𝑟) ∈ 𝑆) |
56 | 38, 40, 41 | caovcld 5995 |
. . . . . 6
⊢ (((𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑆) ∧ (ℎ ∈ 𝑆 ∧ 𝑡 ∈ 𝑆) ∧ (𝑠 ∈ 𝑆 ∧ 𝑟 ∈ 𝑆)) → (𝑔 + 𝑠) ∈ 𝑆) |
57 | 51, 53, 55, 56 | caovcand 6004 |
. . . . 5
⊢ (((𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑆) ∧ (ℎ ∈ 𝑆 ∧ 𝑡 ∈ 𝑆) ∧ (𝑠 ∈ 𝑆 ∧ 𝑟 ∈ 𝑆)) → (((ℎ + 𝑡) + (𝑓 + 𝑟)) = ((ℎ + 𝑡) + (𝑔 + 𝑠)) ↔ (𝑓 + 𝑟) = (𝑔 + 𝑠))) |
58 | 47, 57 | sylibd 148 |
. . . 4
⊢ (((𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑆) ∧ (ℎ ∈ 𝑆 ∧ 𝑡 ∈ 𝑆) ∧ (𝑠 ∈ 𝑆 ∧ 𝑟 ∈ 𝑆)) → ((〈𝑓, 𝑔〉 ∼ 〈ℎ, 𝑡〉 ∧ 〈ℎ, 𝑡〉 ∼ 〈𝑠, 𝑟〉) → (𝑓 + 𝑟) = (𝑔 + 𝑠))) |
59 | 1 | ecopoveq 6596 |
. . . . 5
⊢ (((𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑆) ∧ (𝑠 ∈ 𝑆 ∧ 𝑟 ∈ 𝑆)) → (〈𝑓, 𝑔〉 ∼ 〈𝑠, 𝑟〉 ↔ (𝑓 + 𝑟) = (𝑔 + 𝑠))) |
60 | 59 | 3adant2 1006 |
. . . 4
⊢ (((𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑆) ∧ (ℎ ∈ 𝑆 ∧ 𝑡 ∈ 𝑆) ∧ (𝑠 ∈ 𝑆 ∧ 𝑟 ∈ 𝑆)) → (〈𝑓, 𝑔〉 ∼ 〈𝑠, 𝑟〉 ↔ (𝑓 + 𝑟) = (𝑔 + 𝑠))) |
61 | 58, 60 | sylibrd 168 |
. . 3
⊢ (((𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑆) ∧ (ℎ ∈ 𝑆 ∧ 𝑡 ∈ 𝑆) ∧ (𝑠 ∈ 𝑆 ∧ 𝑟 ∈ 𝑆)) → ((〈𝑓, 𝑔〉 ∼ 〈ℎ, 𝑡〉 ∧ 〈ℎ, 𝑡〉 ∼ 〈𝑠, 𝑟〉) → 〈𝑓, 𝑔〉 ∼ 〈𝑠, 𝑟〉)) |
62 | 10, 14, 18, 22, 61 | 3optocl 4682 |
. 2
⊢ ((𝐴 ∈ (𝑆 × 𝑆) ∧ 𝐵 ∈ (𝑆 × 𝑆) ∧ 𝐶 ∈ (𝑆 × 𝑆)) → ((𝐴 ∼ 𝐵 ∧ 𝐵 ∼ 𝐶) → 𝐴 ∼ 𝐶)) |
63 | 9, 62 | mpcom 36 |
1
⊢ ((𝐴 ∼ 𝐵 ∧ 𝐵 ∼ 𝐶) → 𝐴 ∼ 𝐶) |