ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltanqg GIF version

Theorem ltanqg 6862
Description: Ordering property of addition for positive fractions. Proposition 9-2.6(ii) of [Gleason] p. 120. (Contributed by Jim Kingdon, 22-Sep-2019.)
Assertion
Ref Expression
ltanqg ((𝐴Q𝐵Q𝐶Q) → (𝐴 <Q 𝐵 ↔ (𝐶 +Q 𝐴) <Q (𝐶 +Q 𝐵)))

Proof of Theorem ltanqg
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 6810 . 2 Q = ((N × N) / ~Q )
2 breq1 3814 . . 3 ([⟨𝑥, 𝑦⟩] ~Q = 𝐴 → ([⟨𝑥, 𝑦⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q𝐴 <Q [⟨𝑧, 𝑤⟩] ~Q ))
3 oveq2 5599 . . . 4 ([⟨𝑥, 𝑦⟩] ~Q = 𝐴 → ([⟨𝑣, 𝑢⟩] ~Q +Q [⟨𝑥, 𝑦⟩] ~Q ) = ([⟨𝑣, 𝑢⟩] ~Q +Q 𝐴))
43breq1d 3821 . . 3 ([⟨𝑥, 𝑦⟩] ~Q = 𝐴 → (([⟨𝑣, 𝑢⟩] ~Q +Q [⟨𝑥, 𝑦⟩] ~Q ) <Q ([⟨𝑣, 𝑢⟩] ~Q +Q [⟨𝑧, 𝑤⟩] ~Q ) ↔ ([⟨𝑣, 𝑢⟩] ~Q +Q 𝐴) <Q ([⟨𝑣, 𝑢⟩] ~Q +Q [⟨𝑧, 𝑤⟩] ~Q )))
52, 4bibi12d 233 . 2 ([⟨𝑥, 𝑦⟩] ~Q = 𝐴 → (([⟨𝑥, 𝑦⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ↔ ([⟨𝑣, 𝑢⟩] ~Q +Q [⟨𝑥, 𝑦⟩] ~Q ) <Q ([⟨𝑣, 𝑢⟩] ~Q +Q [⟨𝑧, 𝑤⟩] ~Q )) ↔ (𝐴 <Q [⟨𝑧, 𝑤⟩] ~Q ↔ ([⟨𝑣, 𝑢⟩] ~Q +Q 𝐴) <Q ([⟨𝑣, 𝑢⟩] ~Q +Q [⟨𝑧, 𝑤⟩] ~Q ))))
6 breq2 3815 . . 3 ([⟨𝑧, 𝑤⟩] ~Q = 𝐵 → (𝐴 <Q [⟨𝑧, 𝑤⟩] ~Q𝐴 <Q 𝐵))
7 oveq2 5599 . . . 4 ([⟨𝑧, 𝑤⟩] ~Q = 𝐵 → ([⟨𝑣, 𝑢⟩] ~Q +Q [⟨𝑧, 𝑤⟩] ~Q ) = ([⟨𝑣, 𝑢⟩] ~Q +Q 𝐵))
87breq2d 3823 . . 3 ([⟨𝑧, 𝑤⟩] ~Q = 𝐵 → (([⟨𝑣, 𝑢⟩] ~Q +Q 𝐴) <Q ([⟨𝑣, 𝑢⟩] ~Q +Q [⟨𝑧, 𝑤⟩] ~Q ) ↔ ([⟨𝑣, 𝑢⟩] ~Q +Q 𝐴) <Q ([⟨𝑣, 𝑢⟩] ~Q +Q 𝐵)))
96, 8bibi12d 233 . 2 ([⟨𝑧, 𝑤⟩] ~Q = 𝐵 → ((𝐴 <Q [⟨𝑧, 𝑤⟩] ~Q ↔ ([⟨𝑣, 𝑢⟩] ~Q +Q 𝐴) <Q ([⟨𝑣, 𝑢⟩] ~Q +Q [⟨𝑧, 𝑤⟩] ~Q )) ↔ (𝐴 <Q 𝐵 ↔ ([⟨𝑣, 𝑢⟩] ~Q +Q 𝐴) <Q ([⟨𝑣, 𝑢⟩] ~Q +Q 𝐵))))
10 oveq1 5598 . . . 4 ([⟨𝑣, 𝑢⟩] ~Q = 𝐶 → ([⟨𝑣, 𝑢⟩] ~Q +Q 𝐴) = (𝐶 +Q 𝐴))
11 oveq1 5598 . . . 4 ([⟨𝑣, 𝑢⟩] ~Q = 𝐶 → ([⟨𝑣, 𝑢⟩] ~Q +Q 𝐵) = (𝐶 +Q 𝐵))
1210, 11breq12d 3824 . . 3 ([⟨𝑣, 𝑢⟩] ~Q = 𝐶 → (([⟨𝑣, 𝑢⟩] ~Q +Q 𝐴) <Q ([⟨𝑣, 𝑢⟩] ~Q +Q 𝐵) ↔ (𝐶 +Q 𝐴) <Q (𝐶 +Q 𝐵)))
1312bibi2d 230 . 2 ([⟨𝑣, 𝑢⟩] ~Q = 𝐶 → ((𝐴 <Q 𝐵 ↔ ([⟨𝑣, 𝑢⟩] ~Q +Q 𝐴) <Q ([⟨𝑣, 𝑢⟩] ~Q +Q 𝐵)) ↔ (𝐴 <Q 𝐵 ↔ (𝐶 +Q 𝐴) <Q (𝐶 +Q 𝐵))))
14 addclpi 6789 . . . . . 6 ((𝑓N𝑔N) → (𝑓 +N 𝑔) ∈ N)
1514adantl 271 . . . . 5 ((((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝑓N𝑔N)) → (𝑓 +N 𝑔) ∈ N)
16 simp3l 967 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → 𝑣N)
17 simp1r 964 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → 𝑦N)
18 mulclpi 6790 . . . . . 6 ((𝑣N𝑦N) → (𝑣 ·N 𝑦) ∈ N)
1916, 17, 18syl2anc 403 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑣 ·N 𝑦) ∈ N)
20 simp3r 968 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → 𝑢N)
21 simp1l 963 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → 𝑥N)
22 mulclpi 6790 . . . . . 6 ((𝑢N𝑥N) → (𝑢 ·N 𝑥) ∈ N)
2320, 21, 22syl2anc 403 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑢 ·N 𝑥) ∈ N)
2415, 19, 23caovcld 5733 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑣 ·N 𝑦) +N (𝑢 ·N 𝑥)) ∈ N)
25 mulclpi 6790 . . . . 5 ((𝑢N𝑦N) → (𝑢 ·N 𝑦) ∈ N)
2620, 17, 25syl2anc 403 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑢 ·N 𝑦) ∈ N)
27 mulclpi 6790 . . . . . . 7 ((𝑓N𝑔N) → (𝑓 ·N 𝑔) ∈ N)
2827adantl 271 . . . . . 6 ((((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝑓N𝑔N)) → (𝑓 ·N 𝑔) ∈ N)
29 simp2r 966 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → 𝑤N)
3028, 16, 29caovcld 5733 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑣 ·N 𝑤) ∈ N)
31 simp2l 965 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → 𝑧N)
32 mulclpi 6790 . . . . . 6 ((𝑢N𝑧N) → (𝑢 ·N 𝑧) ∈ N)
3320, 31, 32syl2anc 403 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑢 ·N 𝑧) ∈ N)
3415, 30, 33caovcld 5733 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑣 ·N 𝑤) +N (𝑢 ·N 𝑧)) ∈ N)
35 mulclpi 6790 . . . . 5 ((𝑢N𝑤N) → (𝑢 ·N 𝑤) ∈ N)
3620, 29, 35syl2anc 403 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑢 ·N 𝑤) ∈ N)
37 ordpipqqs 6836 . . . 4 (((((𝑣 ·N 𝑦) +N (𝑢 ·N 𝑥)) ∈ N ∧ (𝑢 ·N 𝑦) ∈ N) ∧ (((𝑣 ·N 𝑤) +N (𝑢 ·N 𝑧)) ∈ N ∧ (𝑢 ·N 𝑤) ∈ N)) → ([⟨((𝑣 ·N 𝑦) +N (𝑢 ·N 𝑥)), (𝑢 ·N 𝑦)⟩] ~Q <Q [⟨((𝑣 ·N 𝑤) +N (𝑢 ·N 𝑧)), (𝑢 ·N 𝑤)⟩] ~Q ↔ (((𝑣 ·N 𝑦) +N (𝑢 ·N 𝑥)) ·N (𝑢 ·N 𝑤)) <N ((𝑢 ·N 𝑦) ·N ((𝑣 ·N 𝑤) +N (𝑢 ·N 𝑧)))))
3824, 26, 34, 36, 37syl22anc 1171 . . 3 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ([⟨((𝑣 ·N 𝑦) +N (𝑢 ·N 𝑥)), (𝑢 ·N 𝑦)⟩] ~Q <Q [⟨((𝑣 ·N 𝑤) +N (𝑢 ·N 𝑧)), (𝑢 ·N 𝑤)⟩] ~Q ↔ (((𝑣 ·N 𝑦) +N (𝑢 ·N 𝑥)) ·N (𝑢 ·N 𝑤)) <N ((𝑢 ·N 𝑦) ·N ((𝑣 ·N 𝑤) +N (𝑢 ·N 𝑧)))))
39 simp3 941 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑣N𝑢N))
40 simp1 939 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑥N𝑦N))
41 addpipqqs 6832 . . . . 5 (((𝑣N𝑢N) ∧ (𝑥N𝑦N)) → ([⟨𝑣, 𝑢⟩] ~Q +Q [⟨𝑥, 𝑦⟩] ~Q ) = [⟨((𝑣 ·N 𝑦) +N (𝑢 ·N 𝑥)), (𝑢 ·N 𝑦)⟩] ~Q )
4239, 40, 41syl2anc 403 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ([⟨𝑣, 𝑢⟩] ~Q +Q [⟨𝑥, 𝑦⟩] ~Q ) = [⟨((𝑣 ·N 𝑦) +N (𝑢 ·N 𝑥)), (𝑢 ·N 𝑦)⟩] ~Q )
43 simp2 940 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑧N𝑤N))
44 addpipqqs 6832 . . . . 5 (((𝑣N𝑢N) ∧ (𝑧N𝑤N)) → ([⟨𝑣, 𝑢⟩] ~Q +Q [⟨𝑧, 𝑤⟩] ~Q ) = [⟨((𝑣 ·N 𝑤) +N (𝑢 ·N 𝑧)), (𝑢 ·N 𝑤)⟩] ~Q )
4539, 43, 44syl2anc 403 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ([⟨𝑣, 𝑢⟩] ~Q +Q [⟨𝑧, 𝑤⟩] ~Q ) = [⟨((𝑣 ·N 𝑤) +N (𝑢 ·N 𝑧)), (𝑢 ·N 𝑤)⟩] ~Q )
4642, 45breq12d 3824 . . 3 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (([⟨𝑣, 𝑢⟩] ~Q +Q [⟨𝑥, 𝑦⟩] ~Q ) <Q ([⟨𝑣, 𝑢⟩] ~Q +Q [⟨𝑧, 𝑤⟩] ~Q ) ↔ [⟨((𝑣 ·N 𝑦) +N (𝑢 ·N 𝑥)), (𝑢 ·N 𝑦)⟩] ~Q <Q [⟨((𝑣 ·N 𝑤) +N (𝑢 ·N 𝑧)), (𝑢 ·N 𝑤)⟩] ~Q ))
47 ordpipqqs 6836 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → ([⟨𝑥, 𝑦⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ↔ (𝑥 ·N 𝑤) <N (𝑦 ·N 𝑧)))
48473adant3 959 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ([⟨𝑥, 𝑦⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ↔ (𝑥 ·N 𝑤) <N (𝑦 ·N 𝑧)))
49 mulclpi 6790 . . . . . 6 ((𝑥N𝑤N) → (𝑥 ·N 𝑤) ∈ N)
5021, 29, 49syl2anc 403 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑥 ·N 𝑤) ∈ N)
51 mulclpi 6790 . . . . . 6 ((𝑦N𝑧N) → (𝑦 ·N 𝑧) ∈ N)
5217, 31, 51syl2anc 403 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑦 ·N 𝑧) ∈ N)
53 mulclpi 6790 . . . . . 6 ((𝑢N𝑢N) → (𝑢 ·N 𝑢) ∈ N)
5420, 20, 53syl2anc 403 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑢 ·N 𝑢) ∈ N)
55 ltmpig 6801 . . . . 5 (((𝑥 ·N 𝑤) ∈ N ∧ (𝑦 ·N 𝑧) ∈ N ∧ (𝑢 ·N 𝑢) ∈ N) → ((𝑥 ·N 𝑤) <N (𝑦 ·N 𝑧) ↔ ((𝑢 ·N 𝑢) ·N (𝑥 ·N 𝑤)) <N ((𝑢 ·N 𝑢) ·N (𝑦 ·N 𝑧))))
5650, 52, 54, 55syl3anc 1170 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑥 ·N 𝑤) <N (𝑦 ·N 𝑧) ↔ ((𝑢 ·N 𝑢) ·N (𝑥 ·N 𝑤)) <N ((𝑢 ·N 𝑢) ·N (𝑦 ·N 𝑧))))
57 mulclpi 6790 . . . . . . 7 (((𝑢 ·N 𝑥) ∈ N ∧ (𝑢 ·N 𝑤) ∈ N) → ((𝑢 ·N 𝑥) ·N (𝑢 ·N 𝑤)) ∈ N)
5823, 36, 57syl2anc 403 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑢 ·N 𝑥) ·N (𝑢 ·N 𝑤)) ∈ N)
59 mulclpi 6790 . . . . . . 7 (((𝑢 ·N 𝑦) ∈ N ∧ (𝑢 ·N 𝑧) ∈ N) → ((𝑢 ·N 𝑦) ·N (𝑢 ·N 𝑧)) ∈ N)
6026, 33, 59syl2anc 403 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑢 ·N 𝑦) ·N (𝑢 ·N 𝑧)) ∈ N)
61 mulclpi 6790 . . . . . . 7 (((𝑣 ·N 𝑦) ∈ N ∧ (𝑢 ·N 𝑤) ∈ N) → ((𝑣 ·N 𝑦) ·N (𝑢 ·N 𝑤)) ∈ N)
6219, 36, 61syl2anc 403 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑣 ·N 𝑦) ·N (𝑢 ·N 𝑤)) ∈ N)
63 ltapig 6800 . . . . . 6 ((((𝑢 ·N 𝑥) ·N (𝑢 ·N 𝑤)) ∈ N ∧ ((𝑢 ·N 𝑦) ·N (𝑢 ·N 𝑧)) ∈ N ∧ ((𝑣 ·N 𝑦) ·N (𝑢 ·N 𝑤)) ∈ N) → (((𝑢 ·N 𝑥) ·N (𝑢 ·N 𝑤)) <N ((𝑢 ·N 𝑦) ·N (𝑢 ·N 𝑧)) ↔ (((𝑣 ·N 𝑦) ·N (𝑢 ·N 𝑤)) +N ((𝑢 ·N 𝑥) ·N (𝑢 ·N 𝑤))) <N (((𝑣 ·N 𝑦) ·N (𝑢 ·N 𝑤)) +N ((𝑢 ·N 𝑦) ·N (𝑢 ·N 𝑧)))))
6458, 60, 62, 63syl3anc 1170 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (((𝑢 ·N 𝑥) ·N (𝑢 ·N 𝑤)) <N ((𝑢 ·N 𝑦) ·N (𝑢 ·N 𝑧)) ↔ (((𝑣 ·N 𝑦) ·N (𝑢 ·N 𝑤)) +N ((𝑢 ·N 𝑥) ·N (𝑢 ·N 𝑤))) <N (((𝑣 ·N 𝑦) ·N (𝑢 ·N 𝑤)) +N ((𝑢 ·N 𝑦) ·N (𝑢 ·N 𝑧)))))
65 mulcompig 6793 . . . . . . . 8 ((𝑓N𝑔N) → (𝑓 ·N 𝑔) = (𝑔 ·N 𝑓))
6665adantl 271 . . . . . . 7 ((((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝑓N𝑔N)) → (𝑓 ·N 𝑔) = (𝑔 ·N 𝑓))
67 mulasspig 6794 . . . . . . . 8 ((𝑓N𝑔NN) → ((𝑓 ·N 𝑔) ·N ) = (𝑓 ·N (𝑔 ·N )))
6867adantl 271 . . . . . . 7 ((((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝑓N𝑔NN)) → ((𝑓 ·N 𝑔) ·N ) = (𝑓 ·N (𝑔 ·N )))
6920, 20, 21, 66, 68, 29, 28caov4d 5764 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑢 ·N 𝑢) ·N (𝑥 ·N 𝑤)) = ((𝑢 ·N 𝑥) ·N (𝑢 ·N 𝑤)))
7020, 20, 17, 66, 68, 31, 28caov4d 5764 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑢 ·N 𝑢) ·N (𝑦 ·N 𝑧)) = ((𝑢 ·N 𝑦) ·N (𝑢 ·N 𝑧)))
7169, 70breq12d 3824 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (((𝑢 ·N 𝑢) ·N (𝑥 ·N 𝑤)) <N ((𝑢 ·N 𝑢) ·N (𝑦 ·N 𝑧)) ↔ ((𝑢 ·N 𝑥) ·N (𝑢 ·N 𝑤)) <N ((𝑢 ·N 𝑦) ·N (𝑢 ·N 𝑧))))
72 distrpig 6795 . . . . . . . 8 ((𝑓N𝑔NN) → (𝑓 ·N (𝑔 +N )) = ((𝑓 ·N 𝑔) +N (𝑓 ·N )))
7372adantl 271 . . . . . . 7 ((((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝑓N𝑔NN)) → (𝑓 ·N (𝑔 +N )) = ((𝑓 ·N 𝑔) +N (𝑓 ·N )))
7473, 19, 23, 36, 15, 66caovdir2d 5756 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (((𝑣 ·N 𝑦) +N (𝑢 ·N 𝑥)) ·N (𝑢 ·N 𝑤)) = (((𝑣 ·N 𝑦) ·N (𝑢 ·N 𝑤)) +N ((𝑢 ·N 𝑥) ·N (𝑢 ·N 𝑤))))
7573, 26, 30, 33caovdid 5755 . . . . . . 7 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑢 ·N 𝑦) ·N ((𝑣 ·N 𝑤) +N (𝑢 ·N 𝑧))) = (((𝑢 ·N 𝑦) ·N (𝑣 ·N 𝑤)) +N ((𝑢 ·N 𝑦) ·N (𝑢 ·N 𝑧))))
7620, 17, 16, 66, 68, 29, 28caov411d 5765 . . . . . . . 8 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑢 ·N 𝑦) ·N (𝑣 ·N 𝑤)) = ((𝑣 ·N 𝑦) ·N (𝑢 ·N 𝑤)))
7776oveq1d 5606 . . . . . . 7 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (((𝑢 ·N 𝑦) ·N (𝑣 ·N 𝑤)) +N ((𝑢 ·N 𝑦) ·N (𝑢 ·N 𝑧))) = (((𝑣 ·N 𝑦) ·N (𝑢 ·N 𝑤)) +N ((𝑢 ·N 𝑦) ·N (𝑢 ·N 𝑧))))
7875, 77eqtrd 2115 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑢 ·N 𝑦) ·N ((𝑣 ·N 𝑤) +N (𝑢 ·N 𝑧))) = (((𝑣 ·N 𝑦) ·N (𝑢 ·N 𝑤)) +N ((𝑢 ·N 𝑦) ·N (𝑢 ·N 𝑧))))
7974, 78breq12d 3824 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((((𝑣 ·N 𝑦) +N (𝑢 ·N 𝑥)) ·N (𝑢 ·N 𝑤)) <N ((𝑢 ·N 𝑦) ·N ((𝑣 ·N 𝑤) +N (𝑢 ·N 𝑧))) ↔ (((𝑣 ·N 𝑦) ·N (𝑢 ·N 𝑤)) +N ((𝑢 ·N 𝑥) ·N (𝑢 ·N 𝑤))) <N (((𝑣 ·N 𝑦) ·N (𝑢 ·N 𝑤)) +N ((𝑢 ·N 𝑦) ·N (𝑢 ·N 𝑧)))))
8064, 71, 793bitr4d 218 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (((𝑢 ·N 𝑢) ·N (𝑥 ·N 𝑤)) <N ((𝑢 ·N 𝑢) ·N (𝑦 ·N 𝑧)) ↔ (((𝑣 ·N 𝑦) +N (𝑢 ·N 𝑥)) ·N (𝑢 ·N 𝑤)) <N ((𝑢 ·N 𝑦) ·N ((𝑣 ·N 𝑤) +N (𝑢 ·N 𝑧)))))
8148, 56, 803bitrd 212 . . 3 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ([⟨𝑥, 𝑦⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ↔ (((𝑣 ·N 𝑦) +N (𝑢 ·N 𝑥)) ·N (𝑢 ·N 𝑤)) <N ((𝑢 ·N 𝑦) ·N ((𝑣 ·N 𝑤) +N (𝑢 ·N 𝑧)))))
8238, 46, 813bitr4rd 219 . 2 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ([⟨𝑥, 𝑦⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ↔ ([⟨𝑣, 𝑢⟩] ~Q +Q [⟨𝑥, 𝑦⟩] ~Q ) <Q ([⟨𝑣, 𝑢⟩] ~Q +Q [⟨𝑧, 𝑤⟩] ~Q )))
831, 5, 9, 13, 823ecoptocl 6311 1 ((𝐴Q𝐵Q𝐶Q) → (𝐴 <Q 𝐵 ↔ (𝐶 +Q 𝐴) <Q (𝐶 +Q 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3a 920   = wceq 1285  wcel 1434  cop 3425   class class class wbr 3811  (class class class)co 5591  [cec 6220  Ncnpi 6734   +N cpli 6735   ·N cmi 6736   <N clti 6737   ~Q ceq 6741  Qcnq 6742   +Q cplq 6744   <Q cltq 6747
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3919  ax-sep 3922  ax-nul 3930  ax-pow 3974  ax-pr 4000  ax-un 4224  ax-setind 4316  ax-iinf 4366
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2614  df-sbc 2827  df-csb 2920  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-nul 3270  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-iun 3706  df-br 3812  df-opab 3866  df-mpt 3867  df-tr 3902  df-eprel 4080  df-id 4084  df-iord 4157  df-on 4159  df-suc 4162  df-iom 4369  df-xp 4407  df-rel 4408  df-cnv 4409  df-co 4410  df-dm 4411  df-rn 4412  df-res 4413  df-ima 4414  df-iota 4934  df-fun 4971  df-fn 4972  df-f 4973  df-f1 4974  df-fo 4975  df-f1o 4976  df-fv 4977  df-ov 5594  df-oprab 5595  df-mpt2 5596  df-1st 5846  df-2nd 5847  df-recs 6002  df-irdg 6067  df-oadd 6117  df-omul 6118  df-er 6222  df-ec 6224  df-qs 6228  df-ni 6766  df-pli 6767  df-mi 6768  df-lti 6769  df-plpq 6806  df-enq 6809  df-nqqs 6810  df-plqqs 6811  df-ltnqqs 6815
This theorem is referenced by:  ltanqi  6864  lt2addnq  6866  ltaddnq  6869  prarloclemlt  6955  prarloclemcalc  6964  addlocprlemgt  6996  addclpr  6999  prmuloclemcalc  7027  distrlem4prl  7046  distrlem4pru  7047  ltexprlemopl  7063  ltexprlemopu  7065  ltexprlemdisj  7068  ltexprlemloc  7069  ltexprlemfl  7071  ltexprlemfu  7073  aptiprleml  7101  aptiprlemu  7102  cauappcvgprlemopl  7108  cauappcvgprlemlol  7109  cauappcvgprlemdisj  7113  cauappcvgprlemloc  7114  cauappcvgprlemladdfu  7116  cauappcvgprlemladdru  7118  cauappcvgprlemladdrl  7119  cauappcvgprlem1  7121  caucvgprlemnkj  7128  caucvgprlemnbj  7129  caucvgprlemm  7130  caucvgprlemopl  7131  caucvgprlemlol  7132  caucvgprlemloc  7137  caucvgprlemladdfu  7139  caucvgprlemladdrl  7140  caucvgprprlemml  7156  caucvgprprlemopl  7159  caucvgprprlemlol  7160
  Copyright terms: Public domain W3C validator