Step | Hyp | Ref
| Expression |
1 | | df-nqqs 7297 |
. 2
⊢
Q = ((N × N) /
~Q ) |
2 | | breq1 3990 |
. . 3
⊢
([〈𝑥, 𝑦〉]
~Q = 𝐴 → ([〈𝑥, 𝑦〉] ~Q
<Q [〈𝑧, 𝑤〉] ~Q ↔
𝐴
<Q [〈𝑧, 𝑤〉] ~Q
)) |
3 | | oveq2 5858 |
. . . 4
⊢
([〈𝑥, 𝑦〉]
~Q = 𝐴 → ([〈𝑣, 𝑢〉] ~Q
+Q [〈𝑥, 𝑦〉] ~Q ) =
([〈𝑣, 𝑢〉]
~Q +Q 𝐴)) |
4 | 3 | breq1d 3997 |
. . 3
⊢
([〈𝑥, 𝑦〉]
~Q = 𝐴 → (([〈𝑣, 𝑢〉] ~Q
+Q [〈𝑥, 𝑦〉] ~Q )
<Q ([〈𝑣, 𝑢〉] ~Q
+Q [〈𝑧, 𝑤〉] ~Q ) ↔
([〈𝑣, 𝑢〉]
~Q +Q 𝐴) <Q
([〈𝑣, 𝑢〉]
~Q +Q [〈𝑧, 𝑤〉] ~Q
))) |
5 | 2, 4 | bibi12d 234 |
. 2
⊢
([〈𝑥, 𝑦〉]
~Q = 𝐴 → (([〈𝑥, 𝑦〉] ~Q
<Q [〈𝑧, 𝑤〉] ~Q ↔
([〈𝑣, 𝑢〉]
~Q +Q [〈𝑥, 𝑦〉] ~Q )
<Q ([〈𝑣, 𝑢〉] ~Q
+Q [〈𝑧, 𝑤〉] ~Q )) ↔
(𝐴
<Q [〈𝑧, 𝑤〉] ~Q ↔
([〈𝑣, 𝑢〉]
~Q +Q 𝐴) <Q
([〈𝑣, 𝑢〉]
~Q +Q [〈𝑧, 𝑤〉] ~Q
)))) |
6 | | breq2 3991 |
. . 3
⊢
([〈𝑧, 𝑤〉]
~Q = 𝐵 → (𝐴 <Q [〈𝑧, 𝑤〉] ~Q ↔
𝐴
<Q 𝐵)) |
7 | | oveq2 5858 |
. . . 4
⊢
([〈𝑧, 𝑤〉]
~Q = 𝐵 → ([〈𝑣, 𝑢〉] ~Q
+Q [〈𝑧, 𝑤〉] ~Q ) =
([〈𝑣, 𝑢〉]
~Q +Q 𝐵)) |
8 | 7 | breq2d 3999 |
. . 3
⊢
([〈𝑧, 𝑤〉]
~Q = 𝐵 → (([〈𝑣, 𝑢〉] ~Q
+Q 𝐴) <Q
([〈𝑣, 𝑢〉]
~Q +Q [〈𝑧, 𝑤〉] ~Q ) ↔
([〈𝑣, 𝑢〉]
~Q +Q 𝐴) <Q
([〈𝑣, 𝑢〉]
~Q +Q 𝐵))) |
9 | 6, 8 | bibi12d 234 |
. 2
⊢
([〈𝑧, 𝑤〉]
~Q = 𝐵 → ((𝐴 <Q [〈𝑧, 𝑤〉] ~Q ↔
([〈𝑣, 𝑢〉]
~Q +Q 𝐴) <Q
([〈𝑣, 𝑢〉]
~Q +Q [〈𝑧, 𝑤〉] ~Q )) ↔
(𝐴
<Q 𝐵 ↔ ([〈𝑣, 𝑢〉] ~Q
+Q 𝐴) <Q
([〈𝑣, 𝑢〉]
~Q +Q 𝐵)))) |
10 | | oveq1 5857 |
. . . 4
⊢
([〈𝑣, 𝑢〉]
~Q = 𝐶 → ([〈𝑣, 𝑢〉] ~Q
+Q 𝐴) = (𝐶 +Q 𝐴)) |
11 | | oveq1 5857 |
. . . 4
⊢
([〈𝑣, 𝑢〉]
~Q = 𝐶 → ([〈𝑣, 𝑢〉] ~Q
+Q 𝐵) = (𝐶 +Q 𝐵)) |
12 | 10, 11 | breq12d 4000 |
. . 3
⊢
([〈𝑣, 𝑢〉]
~Q = 𝐶 → (([〈𝑣, 𝑢〉] ~Q
+Q 𝐴) <Q
([〈𝑣, 𝑢〉]
~Q +Q 𝐵) ↔ (𝐶 +Q 𝐴) <Q
(𝐶
+Q 𝐵))) |
13 | 12 | bibi2d 231 |
. 2
⊢
([〈𝑣, 𝑢〉]
~Q = 𝐶 → ((𝐴 <Q 𝐵 ↔ ([〈𝑣, 𝑢〉] ~Q
+Q 𝐴) <Q
([〈𝑣, 𝑢〉]
~Q +Q 𝐵)) ↔ (𝐴 <Q 𝐵 ↔ (𝐶 +Q 𝐴) <Q
(𝐶
+Q 𝐵)))) |
14 | | addclpi 7276 |
. . . . . 6
⊢ ((𝑓 ∈ N ∧
𝑔 ∈ N)
→ (𝑓
+N 𝑔) ∈ N) |
15 | 14 | adantl 275 |
. . . . 5
⊢ ((((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) ∧
(𝑓 ∈ N
∧ 𝑔 ∈
N)) → (𝑓
+N 𝑔) ∈ N) |
16 | | simp3l 1020 |
. . . . . 6
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
𝑣 ∈
N) |
17 | | simp1r 1017 |
. . . . . 6
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
𝑦 ∈
N) |
18 | | mulclpi 7277 |
. . . . . 6
⊢ ((𝑣 ∈ N ∧
𝑦 ∈ N)
→ (𝑣
·N 𝑦) ∈ N) |
19 | 16, 17, 18 | syl2anc 409 |
. . . . 5
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
(𝑣
·N 𝑦) ∈ N) |
20 | | simp3r 1021 |
. . . . . 6
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
𝑢 ∈
N) |
21 | | simp1l 1016 |
. . . . . 6
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
𝑥 ∈
N) |
22 | | mulclpi 7277 |
. . . . . 6
⊢ ((𝑢 ∈ N ∧
𝑥 ∈ N)
→ (𝑢
·N 𝑥) ∈ N) |
23 | 20, 21, 22 | syl2anc 409 |
. . . . 5
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
(𝑢
·N 𝑥) ∈ N) |
24 | 15, 19, 23 | caovcld 6003 |
. . . 4
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
((𝑣
·N 𝑦) +N (𝑢
·N 𝑥)) ∈ N) |
25 | | mulclpi 7277 |
. . . . 5
⊢ ((𝑢 ∈ N ∧
𝑦 ∈ N)
→ (𝑢
·N 𝑦) ∈ N) |
26 | 20, 17, 25 | syl2anc 409 |
. . . 4
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
(𝑢
·N 𝑦) ∈ N) |
27 | | mulclpi 7277 |
. . . . . . 7
⊢ ((𝑓 ∈ N ∧
𝑔 ∈ N)
→ (𝑓
·N 𝑔) ∈ N) |
28 | 27 | adantl 275 |
. . . . . 6
⊢ ((((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) ∧
(𝑓 ∈ N
∧ 𝑔 ∈
N)) → (𝑓
·N 𝑔) ∈ N) |
29 | | simp2r 1019 |
. . . . . 6
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
𝑤 ∈
N) |
30 | 28, 16, 29 | caovcld 6003 |
. . . . 5
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
(𝑣
·N 𝑤) ∈ N) |
31 | | simp2l 1018 |
. . . . . 6
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
𝑧 ∈
N) |
32 | | mulclpi 7277 |
. . . . . 6
⊢ ((𝑢 ∈ N ∧
𝑧 ∈ N)
→ (𝑢
·N 𝑧) ∈ N) |
33 | 20, 31, 32 | syl2anc 409 |
. . . . 5
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
(𝑢
·N 𝑧) ∈ N) |
34 | 15, 30, 33 | caovcld 6003 |
. . . 4
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
((𝑣
·N 𝑤) +N (𝑢
·N 𝑧)) ∈ N) |
35 | | mulclpi 7277 |
. . . . 5
⊢ ((𝑢 ∈ N ∧
𝑤 ∈ N)
→ (𝑢
·N 𝑤) ∈ N) |
36 | 20, 29, 35 | syl2anc 409 |
. . . 4
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
(𝑢
·N 𝑤) ∈ N) |
37 | | ordpipqqs 7323 |
. . . 4
⊢
(((((𝑣
·N 𝑦) +N (𝑢
·N 𝑥)) ∈ N ∧ (𝑢
·N 𝑦) ∈ N) ∧ (((𝑣
·N 𝑤) +N (𝑢
·N 𝑧)) ∈ N ∧ (𝑢
·N 𝑤) ∈ N)) →
([〈((𝑣
·N 𝑦) +N (𝑢
·N 𝑥)), (𝑢 ·N 𝑦)〉]
~Q <Q [〈((𝑣
·N 𝑤) +N (𝑢
·N 𝑧)), (𝑢 ·N 𝑤)〉]
~Q ↔ (((𝑣 ·N 𝑦) +N
(𝑢
·N 𝑥)) ·N (𝑢
·N 𝑤)) <N ((𝑢
·N 𝑦) ·N ((𝑣
·N 𝑤) +N (𝑢
·N 𝑧))))) |
38 | 24, 26, 34, 36, 37 | syl22anc 1234 |
. . 3
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
([〈((𝑣
·N 𝑦) +N (𝑢
·N 𝑥)), (𝑢 ·N 𝑦)〉]
~Q <Q [〈((𝑣
·N 𝑤) +N (𝑢
·N 𝑧)), (𝑢 ·N 𝑤)〉]
~Q ↔ (((𝑣 ·N 𝑦) +N
(𝑢
·N 𝑥)) ·N (𝑢
·N 𝑤)) <N ((𝑢
·N 𝑦) ·N ((𝑣
·N 𝑤) +N (𝑢
·N 𝑧))))) |
39 | | simp3 994 |
. . . . 5
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
(𝑣 ∈ N
∧ 𝑢 ∈
N)) |
40 | | simp1 992 |
. . . . 5
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
(𝑥 ∈ N
∧ 𝑦 ∈
N)) |
41 | | addpipqqs 7319 |
. . . . 5
⊢ (((𝑣 ∈ N ∧
𝑢 ∈ N)
∧ (𝑥 ∈
N ∧ 𝑦
∈ N)) → ([〈𝑣, 𝑢〉] ~Q
+Q [〈𝑥, 𝑦〉] ~Q ) =
[〈((𝑣
·N 𝑦) +N (𝑢
·N 𝑥)), (𝑢 ·N 𝑦)〉]
~Q ) |
42 | 39, 40, 41 | syl2anc 409 |
. . . 4
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
([〈𝑣, 𝑢〉]
~Q +Q [〈𝑥, 𝑦〉] ~Q ) =
[〈((𝑣
·N 𝑦) +N (𝑢
·N 𝑥)), (𝑢 ·N 𝑦)〉]
~Q ) |
43 | | simp2 993 |
. . . . 5
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
(𝑧 ∈ N
∧ 𝑤 ∈
N)) |
44 | | addpipqqs 7319 |
. . . . 5
⊢ (((𝑣 ∈ N ∧
𝑢 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N)) → ([〈𝑣, 𝑢〉] ~Q
+Q [〈𝑧, 𝑤〉] ~Q ) =
[〈((𝑣
·N 𝑤) +N (𝑢
·N 𝑧)), (𝑢 ·N 𝑤)〉]
~Q ) |
45 | 39, 43, 44 | syl2anc 409 |
. . . 4
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
([〈𝑣, 𝑢〉]
~Q +Q [〈𝑧, 𝑤〉] ~Q ) =
[〈((𝑣
·N 𝑤) +N (𝑢
·N 𝑧)), (𝑢 ·N 𝑤)〉]
~Q ) |
46 | 42, 45 | breq12d 4000 |
. . 3
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
(([〈𝑣, 𝑢〉]
~Q +Q [〈𝑥, 𝑦〉] ~Q )
<Q ([〈𝑣, 𝑢〉] ~Q
+Q [〈𝑧, 𝑤〉] ~Q ) ↔
[〈((𝑣
·N 𝑦) +N (𝑢
·N 𝑥)), (𝑢 ·N 𝑦)〉]
~Q <Q [〈((𝑣
·N 𝑤) +N (𝑢
·N 𝑧)), (𝑢 ·N 𝑤)〉]
~Q )) |
47 | | ordpipqqs 7323 |
. . . . 5
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N)) → ([〈𝑥, 𝑦〉] ~Q
<Q [〈𝑧, 𝑤〉] ~Q ↔
(𝑥
·N 𝑤) <N (𝑦
·N 𝑧))) |
48 | 47 | 3adant3 1012 |
. . . 4
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
([〈𝑥, 𝑦〉]
~Q <Q [〈𝑧, 𝑤〉] ~Q ↔
(𝑥
·N 𝑤) <N (𝑦
·N 𝑧))) |
49 | | mulclpi 7277 |
. . . . . 6
⊢ ((𝑥 ∈ N ∧
𝑤 ∈ N)
→ (𝑥
·N 𝑤) ∈ N) |
50 | 21, 29, 49 | syl2anc 409 |
. . . . 5
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
(𝑥
·N 𝑤) ∈ N) |
51 | | mulclpi 7277 |
. . . . . 6
⊢ ((𝑦 ∈ N ∧
𝑧 ∈ N)
→ (𝑦
·N 𝑧) ∈ N) |
52 | 17, 31, 51 | syl2anc 409 |
. . . . 5
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
(𝑦
·N 𝑧) ∈ N) |
53 | | mulclpi 7277 |
. . . . . 6
⊢ ((𝑢 ∈ N ∧
𝑢 ∈ N)
→ (𝑢
·N 𝑢) ∈ N) |
54 | 20, 20, 53 | syl2anc 409 |
. . . . 5
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
(𝑢
·N 𝑢) ∈ N) |
55 | | ltmpig 7288 |
. . . . 5
⊢ (((𝑥
·N 𝑤) ∈ N ∧ (𝑦
·N 𝑧) ∈ N ∧ (𝑢
·N 𝑢) ∈ N) → ((𝑥
·N 𝑤) <N (𝑦
·N 𝑧) ↔ ((𝑢 ·N 𝑢)
·N (𝑥 ·N 𝑤))
<N ((𝑢 ·N 𝑢)
·N (𝑦 ·N 𝑧)))) |
56 | 50, 52, 54, 55 | syl3anc 1233 |
. . . 4
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
((𝑥
·N 𝑤) <N (𝑦
·N 𝑧) ↔ ((𝑢 ·N 𝑢)
·N (𝑥 ·N 𝑤))
<N ((𝑢 ·N 𝑢)
·N (𝑦 ·N 𝑧)))) |
57 | | mulclpi 7277 |
. . . . . . 7
⊢ (((𝑢
·N 𝑥) ∈ N ∧ (𝑢
·N 𝑤) ∈ N) → ((𝑢
·N 𝑥) ·N (𝑢
·N 𝑤)) ∈ N) |
58 | 23, 36, 57 | syl2anc 409 |
. . . . . 6
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
((𝑢
·N 𝑥) ·N (𝑢
·N 𝑤)) ∈ N) |
59 | | mulclpi 7277 |
. . . . . . 7
⊢ (((𝑢
·N 𝑦) ∈ N ∧ (𝑢
·N 𝑧) ∈ N) → ((𝑢
·N 𝑦) ·N (𝑢
·N 𝑧)) ∈ N) |
60 | 26, 33, 59 | syl2anc 409 |
. . . . . 6
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
((𝑢
·N 𝑦) ·N (𝑢
·N 𝑧)) ∈ N) |
61 | | mulclpi 7277 |
. . . . . . 7
⊢ (((𝑣
·N 𝑦) ∈ N ∧ (𝑢
·N 𝑤) ∈ N) → ((𝑣
·N 𝑦) ·N (𝑢
·N 𝑤)) ∈ N) |
62 | 19, 36, 61 | syl2anc 409 |
. . . . . 6
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
((𝑣
·N 𝑦) ·N (𝑢
·N 𝑤)) ∈ N) |
63 | | ltapig 7287 |
. . . . . 6
⊢ ((((𝑢
·N 𝑥) ·N (𝑢
·N 𝑤)) ∈ N ∧ ((𝑢
·N 𝑦) ·N (𝑢
·N 𝑧)) ∈ N ∧ ((𝑣
·N 𝑦) ·N (𝑢
·N 𝑤)) ∈ N) → (((𝑢
·N 𝑥) ·N (𝑢
·N 𝑤)) <N ((𝑢
·N 𝑦) ·N (𝑢
·N 𝑧)) ↔ (((𝑣 ·N 𝑦)
·N (𝑢 ·N 𝑤)) +N
((𝑢
·N 𝑥) ·N (𝑢
·N 𝑤))) <N (((𝑣
·N 𝑦) ·N (𝑢
·N 𝑤)) +N ((𝑢
·N 𝑦) ·N (𝑢
·N 𝑧))))) |
64 | 58, 60, 62, 63 | syl3anc 1233 |
. . . . 5
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
(((𝑢
·N 𝑥) ·N (𝑢
·N 𝑤)) <N ((𝑢
·N 𝑦) ·N (𝑢
·N 𝑧)) ↔ (((𝑣 ·N 𝑦)
·N (𝑢 ·N 𝑤)) +N
((𝑢
·N 𝑥) ·N (𝑢
·N 𝑤))) <N (((𝑣
·N 𝑦) ·N (𝑢
·N 𝑤)) +N ((𝑢
·N 𝑦) ·N (𝑢
·N 𝑧))))) |
65 | | mulcompig 7280 |
. . . . . . . 8
⊢ ((𝑓 ∈ N ∧
𝑔 ∈ N)
→ (𝑓
·N 𝑔) = (𝑔 ·N 𝑓)) |
66 | 65 | adantl 275 |
. . . . . . 7
⊢ ((((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) ∧
(𝑓 ∈ N
∧ 𝑔 ∈
N)) → (𝑓
·N 𝑔) = (𝑔 ·N 𝑓)) |
67 | | mulasspig 7281 |
. . . . . . . 8
⊢ ((𝑓 ∈ N ∧
𝑔 ∈ N
∧ ℎ ∈
N) → ((𝑓
·N 𝑔) ·N ℎ) = (𝑓 ·N (𝑔
·N ℎ))) |
68 | 67 | adantl 275 |
. . . . . . 7
⊢ ((((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) ∧
(𝑓 ∈ N
∧ 𝑔 ∈
N ∧ ℎ
∈ N)) → ((𝑓 ·N 𝑔)
·N ℎ) = (𝑓 ·N (𝑔
·N ℎ))) |
69 | 20, 20, 21, 66, 68, 29, 28 | caov4d 6034 |
. . . . . 6
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
((𝑢
·N 𝑢) ·N (𝑥
·N 𝑤)) = ((𝑢 ·N 𝑥)
·N (𝑢 ·N 𝑤))) |
70 | 20, 20, 17, 66, 68, 31, 28 | caov4d 6034 |
. . . . . 6
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
((𝑢
·N 𝑢) ·N (𝑦
·N 𝑧)) = ((𝑢 ·N 𝑦)
·N (𝑢 ·N 𝑧))) |
71 | 69, 70 | breq12d 4000 |
. . . . 5
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
(((𝑢
·N 𝑢) ·N (𝑥
·N 𝑤)) <N ((𝑢
·N 𝑢) ·N (𝑦
·N 𝑧)) ↔ ((𝑢 ·N 𝑥)
·N (𝑢 ·N 𝑤))
<N ((𝑢 ·N 𝑦)
·N (𝑢 ·N 𝑧)))) |
72 | | distrpig 7282 |
. . . . . . . 8
⊢ ((𝑓 ∈ N ∧
𝑔 ∈ N
∧ ℎ ∈
N) → (𝑓
·N (𝑔 +N ℎ)) = ((𝑓 ·N 𝑔) +N
(𝑓
·N ℎ))) |
73 | 72 | adantl 275 |
. . . . . . 7
⊢ ((((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) ∧
(𝑓 ∈ N
∧ 𝑔 ∈
N ∧ ℎ
∈ N)) → (𝑓 ·N (𝑔 +N
ℎ)) = ((𝑓 ·N 𝑔) +N
(𝑓
·N ℎ))) |
74 | 73, 19, 23, 36, 15, 66 | caovdir2d 6026 |
. . . . . 6
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
(((𝑣
·N 𝑦) +N (𝑢
·N 𝑥)) ·N (𝑢
·N 𝑤)) = (((𝑣 ·N 𝑦)
·N (𝑢 ·N 𝑤)) +N
((𝑢
·N 𝑥) ·N (𝑢
·N 𝑤)))) |
75 | 73, 26, 30, 33 | caovdid 6025 |
. . . . . . 7
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
((𝑢
·N 𝑦) ·N ((𝑣
·N 𝑤) +N (𝑢
·N 𝑧))) = (((𝑢 ·N 𝑦)
·N (𝑣 ·N 𝑤)) +N
((𝑢
·N 𝑦) ·N (𝑢
·N 𝑧)))) |
76 | 20, 17, 16, 66, 68, 29, 28 | caov411d 6035 |
. . . . . . . 8
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
((𝑢
·N 𝑦) ·N (𝑣
·N 𝑤)) = ((𝑣 ·N 𝑦)
·N (𝑢 ·N 𝑤))) |
77 | 76 | oveq1d 5865 |
. . . . . . 7
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
(((𝑢
·N 𝑦) ·N (𝑣
·N 𝑤)) +N ((𝑢
·N 𝑦) ·N (𝑢
·N 𝑧))) = (((𝑣 ·N 𝑦)
·N (𝑢 ·N 𝑤)) +N
((𝑢
·N 𝑦) ·N (𝑢
·N 𝑧)))) |
78 | 75, 77 | eqtrd 2203 |
. . . . . 6
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
((𝑢
·N 𝑦) ·N ((𝑣
·N 𝑤) +N (𝑢
·N 𝑧))) = (((𝑣 ·N 𝑦)
·N (𝑢 ·N 𝑤)) +N
((𝑢
·N 𝑦) ·N (𝑢
·N 𝑧)))) |
79 | 74, 78 | breq12d 4000 |
. . . . 5
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
((((𝑣
·N 𝑦) +N (𝑢
·N 𝑥)) ·N (𝑢
·N 𝑤)) <N ((𝑢
·N 𝑦) ·N ((𝑣
·N 𝑤) +N (𝑢
·N 𝑧))) ↔ (((𝑣 ·N 𝑦)
·N (𝑢 ·N 𝑤)) +N
((𝑢
·N 𝑥) ·N (𝑢
·N 𝑤))) <N (((𝑣
·N 𝑦) ·N (𝑢
·N 𝑤)) +N ((𝑢
·N 𝑦) ·N (𝑢
·N 𝑧))))) |
80 | 64, 71, 79 | 3bitr4d 219 |
. . . 4
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
(((𝑢
·N 𝑢) ·N (𝑥
·N 𝑤)) <N ((𝑢
·N 𝑢) ·N (𝑦
·N 𝑧)) ↔ (((𝑣 ·N 𝑦) +N
(𝑢
·N 𝑥)) ·N (𝑢
·N 𝑤)) <N ((𝑢
·N 𝑦) ·N ((𝑣
·N 𝑤) +N (𝑢
·N 𝑧))))) |
81 | 48, 56, 80 | 3bitrd 213 |
. . 3
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
([〈𝑥, 𝑦〉]
~Q <Q [〈𝑧, 𝑤〉] ~Q ↔
(((𝑣
·N 𝑦) +N (𝑢
·N 𝑥)) ·N (𝑢
·N 𝑤)) <N ((𝑢
·N 𝑦) ·N ((𝑣
·N 𝑤) +N (𝑢
·N 𝑧))))) |
82 | 38, 46, 81 | 3bitr4rd 220 |
. 2
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
([〈𝑥, 𝑦〉]
~Q <Q [〈𝑧, 𝑤〉] ~Q ↔
([〈𝑣, 𝑢〉]
~Q +Q [〈𝑥, 𝑦〉] ~Q )
<Q ([〈𝑣, 𝑢〉] ~Q
+Q [〈𝑧, 𝑤〉] ~Q
))) |
83 | 1, 5, 9, 13, 82 | 3ecoptocl 6598 |
1
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q
∧ 𝐶 ∈
Q) → (𝐴
<Q 𝐵 ↔ (𝐶 +Q 𝐴) <Q
(𝐶
+Q 𝐵))) |