ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltanqg GIF version

Theorem ltanqg 7515
Description: Ordering property of addition for positive fractions. Proposition 9-2.6(ii) of [Gleason] p. 120. (Contributed by Jim Kingdon, 22-Sep-2019.)
Assertion
Ref Expression
ltanqg ((𝐴Q𝐵Q𝐶Q) → (𝐴 <Q 𝐵 ↔ (𝐶 +Q 𝐴) <Q (𝐶 +Q 𝐵)))

Proof of Theorem ltanqg
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 7463 . 2 Q = ((N × N) / ~Q )
2 breq1 4048 . . 3 ([⟨𝑥, 𝑦⟩] ~Q = 𝐴 → ([⟨𝑥, 𝑦⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q𝐴 <Q [⟨𝑧, 𝑤⟩] ~Q ))
3 oveq2 5954 . . . 4 ([⟨𝑥, 𝑦⟩] ~Q = 𝐴 → ([⟨𝑣, 𝑢⟩] ~Q +Q [⟨𝑥, 𝑦⟩] ~Q ) = ([⟨𝑣, 𝑢⟩] ~Q +Q 𝐴))
43breq1d 4055 . . 3 ([⟨𝑥, 𝑦⟩] ~Q = 𝐴 → (([⟨𝑣, 𝑢⟩] ~Q +Q [⟨𝑥, 𝑦⟩] ~Q ) <Q ([⟨𝑣, 𝑢⟩] ~Q +Q [⟨𝑧, 𝑤⟩] ~Q ) ↔ ([⟨𝑣, 𝑢⟩] ~Q +Q 𝐴) <Q ([⟨𝑣, 𝑢⟩] ~Q +Q [⟨𝑧, 𝑤⟩] ~Q )))
52, 4bibi12d 235 . 2 ([⟨𝑥, 𝑦⟩] ~Q = 𝐴 → (([⟨𝑥, 𝑦⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ↔ ([⟨𝑣, 𝑢⟩] ~Q +Q [⟨𝑥, 𝑦⟩] ~Q ) <Q ([⟨𝑣, 𝑢⟩] ~Q +Q [⟨𝑧, 𝑤⟩] ~Q )) ↔ (𝐴 <Q [⟨𝑧, 𝑤⟩] ~Q ↔ ([⟨𝑣, 𝑢⟩] ~Q +Q 𝐴) <Q ([⟨𝑣, 𝑢⟩] ~Q +Q [⟨𝑧, 𝑤⟩] ~Q ))))
6 breq2 4049 . . 3 ([⟨𝑧, 𝑤⟩] ~Q = 𝐵 → (𝐴 <Q [⟨𝑧, 𝑤⟩] ~Q𝐴 <Q 𝐵))
7 oveq2 5954 . . . 4 ([⟨𝑧, 𝑤⟩] ~Q = 𝐵 → ([⟨𝑣, 𝑢⟩] ~Q +Q [⟨𝑧, 𝑤⟩] ~Q ) = ([⟨𝑣, 𝑢⟩] ~Q +Q 𝐵))
87breq2d 4057 . . 3 ([⟨𝑧, 𝑤⟩] ~Q = 𝐵 → (([⟨𝑣, 𝑢⟩] ~Q +Q 𝐴) <Q ([⟨𝑣, 𝑢⟩] ~Q +Q [⟨𝑧, 𝑤⟩] ~Q ) ↔ ([⟨𝑣, 𝑢⟩] ~Q +Q 𝐴) <Q ([⟨𝑣, 𝑢⟩] ~Q +Q 𝐵)))
96, 8bibi12d 235 . 2 ([⟨𝑧, 𝑤⟩] ~Q = 𝐵 → ((𝐴 <Q [⟨𝑧, 𝑤⟩] ~Q ↔ ([⟨𝑣, 𝑢⟩] ~Q +Q 𝐴) <Q ([⟨𝑣, 𝑢⟩] ~Q +Q [⟨𝑧, 𝑤⟩] ~Q )) ↔ (𝐴 <Q 𝐵 ↔ ([⟨𝑣, 𝑢⟩] ~Q +Q 𝐴) <Q ([⟨𝑣, 𝑢⟩] ~Q +Q 𝐵))))
10 oveq1 5953 . . . 4 ([⟨𝑣, 𝑢⟩] ~Q = 𝐶 → ([⟨𝑣, 𝑢⟩] ~Q +Q 𝐴) = (𝐶 +Q 𝐴))
11 oveq1 5953 . . . 4 ([⟨𝑣, 𝑢⟩] ~Q = 𝐶 → ([⟨𝑣, 𝑢⟩] ~Q +Q 𝐵) = (𝐶 +Q 𝐵))
1210, 11breq12d 4058 . . 3 ([⟨𝑣, 𝑢⟩] ~Q = 𝐶 → (([⟨𝑣, 𝑢⟩] ~Q +Q 𝐴) <Q ([⟨𝑣, 𝑢⟩] ~Q +Q 𝐵) ↔ (𝐶 +Q 𝐴) <Q (𝐶 +Q 𝐵)))
1312bibi2d 232 . 2 ([⟨𝑣, 𝑢⟩] ~Q = 𝐶 → ((𝐴 <Q 𝐵 ↔ ([⟨𝑣, 𝑢⟩] ~Q +Q 𝐴) <Q ([⟨𝑣, 𝑢⟩] ~Q +Q 𝐵)) ↔ (𝐴 <Q 𝐵 ↔ (𝐶 +Q 𝐴) <Q (𝐶 +Q 𝐵))))
14 addclpi 7442 . . . . . 6 ((𝑓N𝑔N) → (𝑓 +N 𝑔) ∈ N)
1514adantl 277 . . . . 5 ((((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝑓N𝑔N)) → (𝑓 +N 𝑔) ∈ N)
16 simp3l 1028 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → 𝑣N)
17 simp1r 1025 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → 𝑦N)
18 mulclpi 7443 . . . . . 6 ((𝑣N𝑦N) → (𝑣 ·N 𝑦) ∈ N)
1916, 17, 18syl2anc 411 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑣 ·N 𝑦) ∈ N)
20 simp3r 1029 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → 𝑢N)
21 simp1l 1024 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → 𝑥N)
22 mulclpi 7443 . . . . . 6 ((𝑢N𝑥N) → (𝑢 ·N 𝑥) ∈ N)
2320, 21, 22syl2anc 411 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑢 ·N 𝑥) ∈ N)
2415, 19, 23caovcld 6102 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑣 ·N 𝑦) +N (𝑢 ·N 𝑥)) ∈ N)
25 mulclpi 7443 . . . . 5 ((𝑢N𝑦N) → (𝑢 ·N 𝑦) ∈ N)
2620, 17, 25syl2anc 411 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑢 ·N 𝑦) ∈ N)
27 mulclpi 7443 . . . . . . 7 ((𝑓N𝑔N) → (𝑓 ·N 𝑔) ∈ N)
2827adantl 277 . . . . . 6 ((((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝑓N𝑔N)) → (𝑓 ·N 𝑔) ∈ N)
29 simp2r 1027 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → 𝑤N)
3028, 16, 29caovcld 6102 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑣 ·N 𝑤) ∈ N)
31 simp2l 1026 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → 𝑧N)
32 mulclpi 7443 . . . . . 6 ((𝑢N𝑧N) → (𝑢 ·N 𝑧) ∈ N)
3320, 31, 32syl2anc 411 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑢 ·N 𝑧) ∈ N)
3415, 30, 33caovcld 6102 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑣 ·N 𝑤) +N (𝑢 ·N 𝑧)) ∈ N)
35 mulclpi 7443 . . . . 5 ((𝑢N𝑤N) → (𝑢 ·N 𝑤) ∈ N)
3620, 29, 35syl2anc 411 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑢 ·N 𝑤) ∈ N)
37 ordpipqqs 7489 . . . 4 (((((𝑣 ·N 𝑦) +N (𝑢 ·N 𝑥)) ∈ N ∧ (𝑢 ·N 𝑦) ∈ N) ∧ (((𝑣 ·N 𝑤) +N (𝑢 ·N 𝑧)) ∈ N ∧ (𝑢 ·N 𝑤) ∈ N)) → ([⟨((𝑣 ·N 𝑦) +N (𝑢 ·N 𝑥)), (𝑢 ·N 𝑦)⟩] ~Q <Q [⟨((𝑣 ·N 𝑤) +N (𝑢 ·N 𝑧)), (𝑢 ·N 𝑤)⟩] ~Q ↔ (((𝑣 ·N 𝑦) +N (𝑢 ·N 𝑥)) ·N (𝑢 ·N 𝑤)) <N ((𝑢 ·N 𝑦) ·N ((𝑣 ·N 𝑤) +N (𝑢 ·N 𝑧)))))
3824, 26, 34, 36, 37syl22anc 1251 . . 3 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ([⟨((𝑣 ·N 𝑦) +N (𝑢 ·N 𝑥)), (𝑢 ·N 𝑦)⟩] ~Q <Q [⟨((𝑣 ·N 𝑤) +N (𝑢 ·N 𝑧)), (𝑢 ·N 𝑤)⟩] ~Q ↔ (((𝑣 ·N 𝑦) +N (𝑢 ·N 𝑥)) ·N (𝑢 ·N 𝑤)) <N ((𝑢 ·N 𝑦) ·N ((𝑣 ·N 𝑤) +N (𝑢 ·N 𝑧)))))
39 simp3 1002 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑣N𝑢N))
40 simp1 1000 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑥N𝑦N))
41 addpipqqs 7485 . . . . 5 (((𝑣N𝑢N) ∧ (𝑥N𝑦N)) → ([⟨𝑣, 𝑢⟩] ~Q +Q [⟨𝑥, 𝑦⟩] ~Q ) = [⟨((𝑣 ·N 𝑦) +N (𝑢 ·N 𝑥)), (𝑢 ·N 𝑦)⟩] ~Q )
4239, 40, 41syl2anc 411 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ([⟨𝑣, 𝑢⟩] ~Q +Q [⟨𝑥, 𝑦⟩] ~Q ) = [⟨((𝑣 ·N 𝑦) +N (𝑢 ·N 𝑥)), (𝑢 ·N 𝑦)⟩] ~Q )
43 simp2 1001 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑧N𝑤N))
44 addpipqqs 7485 . . . . 5 (((𝑣N𝑢N) ∧ (𝑧N𝑤N)) → ([⟨𝑣, 𝑢⟩] ~Q +Q [⟨𝑧, 𝑤⟩] ~Q ) = [⟨((𝑣 ·N 𝑤) +N (𝑢 ·N 𝑧)), (𝑢 ·N 𝑤)⟩] ~Q )
4539, 43, 44syl2anc 411 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ([⟨𝑣, 𝑢⟩] ~Q +Q [⟨𝑧, 𝑤⟩] ~Q ) = [⟨((𝑣 ·N 𝑤) +N (𝑢 ·N 𝑧)), (𝑢 ·N 𝑤)⟩] ~Q )
4642, 45breq12d 4058 . . 3 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (([⟨𝑣, 𝑢⟩] ~Q +Q [⟨𝑥, 𝑦⟩] ~Q ) <Q ([⟨𝑣, 𝑢⟩] ~Q +Q [⟨𝑧, 𝑤⟩] ~Q ) ↔ [⟨((𝑣 ·N 𝑦) +N (𝑢 ·N 𝑥)), (𝑢 ·N 𝑦)⟩] ~Q <Q [⟨((𝑣 ·N 𝑤) +N (𝑢 ·N 𝑧)), (𝑢 ·N 𝑤)⟩] ~Q ))
47 ordpipqqs 7489 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → ([⟨𝑥, 𝑦⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ↔ (𝑥 ·N 𝑤) <N (𝑦 ·N 𝑧)))
48473adant3 1020 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ([⟨𝑥, 𝑦⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ↔ (𝑥 ·N 𝑤) <N (𝑦 ·N 𝑧)))
49 mulclpi 7443 . . . . . 6 ((𝑥N𝑤N) → (𝑥 ·N 𝑤) ∈ N)
5021, 29, 49syl2anc 411 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑥 ·N 𝑤) ∈ N)
51 mulclpi 7443 . . . . . 6 ((𝑦N𝑧N) → (𝑦 ·N 𝑧) ∈ N)
5217, 31, 51syl2anc 411 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑦 ·N 𝑧) ∈ N)
53 mulclpi 7443 . . . . . 6 ((𝑢N𝑢N) → (𝑢 ·N 𝑢) ∈ N)
5420, 20, 53syl2anc 411 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑢 ·N 𝑢) ∈ N)
55 ltmpig 7454 . . . . 5 (((𝑥 ·N 𝑤) ∈ N ∧ (𝑦 ·N 𝑧) ∈ N ∧ (𝑢 ·N 𝑢) ∈ N) → ((𝑥 ·N 𝑤) <N (𝑦 ·N 𝑧) ↔ ((𝑢 ·N 𝑢) ·N (𝑥 ·N 𝑤)) <N ((𝑢 ·N 𝑢) ·N (𝑦 ·N 𝑧))))
5650, 52, 54, 55syl3anc 1250 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑥 ·N 𝑤) <N (𝑦 ·N 𝑧) ↔ ((𝑢 ·N 𝑢) ·N (𝑥 ·N 𝑤)) <N ((𝑢 ·N 𝑢) ·N (𝑦 ·N 𝑧))))
57 mulclpi 7443 . . . . . . 7 (((𝑢 ·N 𝑥) ∈ N ∧ (𝑢 ·N 𝑤) ∈ N) → ((𝑢 ·N 𝑥) ·N (𝑢 ·N 𝑤)) ∈ N)
5823, 36, 57syl2anc 411 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑢 ·N 𝑥) ·N (𝑢 ·N 𝑤)) ∈ N)
59 mulclpi 7443 . . . . . . 7 (((𝑢 ·N 𝑦) ∈ N ∧ (𝑢 ·N 𝑧) ∈ N) → ((𝑢 ·N 𝑦) ·N (𝑢 ·N 𝑧)) ∈ N)
6026, 33, 59syl2anc 411 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑢 ·N 𝑦) ·N (𝑢 ·N 𝑧)) ∈ N)
61 mulclpi 7443 . . . . . . 7 (((𝑣 ·N 𝑦) ∈ N ∧ (𝑢 ·N 𝑤) ∈ N) → ((𝑣 ·N 𝑦) ·N (𝑢 ·N 𝑤)) ∈ N)
6219, 36, 61syl2anc 411 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑣 ·N 𝑦) ·N (𝑢 ·N 𝑤)) ∈ N)
63 ltapig 7453 . . . . . 6 ((((𝑢 ·N 𝑥) ·N (𝑢 ·N 𝑤)) ∈ N ∧ ((𝑢 ·N 𝑦) ·N (𝑢 ·N 𝑧)) ∈ N ∧ ((𝑣 ·N 𝑦) ·N (𝑢 ·N 𝑤)) ∈ N) → (((𝑢 ·N 𝑥) ·N (𝑢 ·N 𝑤)) <N ((𝑢 ·N 𝑦) ·N (𝑢 ·N 𝑧)) ↔ (((𝑣 ·N 𝑦) ·N (𝑢 ·N 𝑤)) +N ((𝑢 ·N 𝑥) ·N (𝑢 ·N 𝑤))) <N (((𝑣 ·N 𝑦) ·N (𝑢 ·N 𝑤)) +N ((𝑢 ·N 𝑦) ·N (𝑢 ·N 𝑧)))))
6458, 60, 62, 63syl3anc 1250 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (((𝑢 ·N 𝑥) ·N (𝑢 ·N 𝑤)) <N ((𝑢 ·N 𝑦) ·N (𝑢 ·N 𝑧)) ↔ (((𝑣 ·N 𝑦) ·N (𝑢 ·N 𝑤)) +N ((𝑢 ·N 𝑥) ·N (𝑢 ·N 𝑤))) <N (((𝑣 ·N 𝑦) ·N (𝑢 ·N 𝑤)) +N ((𝑢 ·N 𝑦) ·N (𝑢 ·N 𝑧)))))
65 mulcompig 7446 . . . . . . . 8 ((𝑓N𝑔N) → (𝑓 ·N 𝑔) = (𝑔 ·N 𝑓))
6665adantl 277 . . . . . . 7 ((((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝑓N𝑔N)) → (𝑓 ·N 𝑔) = (𝑔 ·N 𝑓))
67 mulasspig 7447 . . . . . . . 8 ((𝑓N𝑔NN) → ((𝑓 ·N 𝑔) ·N ) = (𝑓 ·N (𝑔 ·N )))
6867adantl 277 . . . . . . 7 ((((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝑓N𝑔NN)) → ((𝑓 ·N 𝑔) ·N ) = (𝑓 ·N (𝑔 ·N )))
6920, 20, 21, 66, 68, 29, 28caov4d 6133 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑢 ·N 𝑢) ·N (𝑥 ·N 𝑤)) = ((𝑢 ·N 𝑥) ·N (𝑢 ·N 𝑤)))
7020, 20, 17, 66, 68, 31, 28caov4d 6133 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑢 ·N 𝑢) ·N (𝑦 ·N 𝑧)) = ((𝑢 ·N 𝑦) ·N (𝑢 ·N 𝑧)))
7169, 70breq12d 4058 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (((𝑢 ·N 𝑢) ·N (𝑥 ·N 𝑤)) <N ((𝑢 ·N 𝑢) ·N (𝑦 ·N 𝑧)) ↔ ((𝑢 ·N 𝑥) ·N (𝑢 ·N 𝑤)) <N ((𝑢 ·N 𝑦) ·N (𝑢 ·N 𝑧))))
72 distrpig 7448 . . . . . . . 8 ((𝑓N𝑔NN) → (𝑓 ·N (𝑔 +N )) = ((𝑓 ·N 𝑔) +N (𝑓 ·N )))
7372adantl 277 . . . . . . 7 ((((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝑓N𝑔NN)) → (𝑓 ·N (𝑔 +N )) = ((𝑓 ·N 𝑔) +N (𝑓 ·N )))
7473, 19, 23, 36, 15, 66caovdir2d 6125 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (((𝑣 ·N 𝑦) +N (𝑢 ·N 𝑥)) ·N (𝑢 ·N 𝑤)) = (((𝑣 ·N 𝑦) ·N (𝑢 ·N 𝑤)) +N ((𝑢 ·N 𝑥) ·N (𝑢 ·N 𝑤))))
7573, 26, 30, 33caovdid 6124 . . . . . . 7 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑢 ·N 𝑦) ·N ((𝑣 ·N 𝑤) +N (𝑢 ·N 𝑧))) = (((𝑢 ·N 𝑦) ·N (𝑣 ·N 𝑤)) +N ((𝑢 ·N 𝑦) ·N (𝑢 ·N 𝑧))))
7620, 17, 16, 66, 68, 29, 28caov411d 6134 . . . . . . . 8 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑢 ·N 𝑦) ·N (𝑣 ·N 𝑤)) = ((𝑣 ·N 𝑦) ·N (𝑢 ·N 𝑤)))
7776oveq1d 5961 . . . . . . 7 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (((𝑢 ·N 𝑦) ·N (𝑣 ·N 𝑤)) +N ((𝑢 ·N 𝑦) ·N (𝑢 ·N 𝑧))) = (((𝑣 ·N 𝑦) ·N (𝑢 ·N 𝑤)) +N ((𝑢 ·N 𝑦) ·N (𝑢 ·N 𝑧))))
7875, 77eqtrd 2238 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑢 ·N 𝑦) ·N ((𝑣 ·N 𝑤) +N (𝑢 ·N 𝑧))) = (((𝑣 ·N 𝑦) ·N (𝑢 ·N 𝑤)) +N ((𝑢 ·N 𝑦) ·N (𝑢 ·N 𝑧))))
7974, 78breq12d 4058 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((((𝑣 ·N 𝑦) +N (𝑢 ·N 𝑥)) ·N (𝑢 ·N 𝑤)) <N ((𝑢 ·N 𝑦) ·N ((𝑣 ·N 𝑤) +N (𝑢 ·N 𝑧))) ↔ (((𝑣 ·N 𝑦) ·N (𝑢 ·N 𝑤)) +N ((𝑢 ·N 𝑥) ·N (𝑢 ·N 𝑤))) <N (((𝑣 ·N 𝑦) ·N (𝑢 ·N 𝑤)) +N ((𝑢 ·N 𝑦) ·N (𝑢 ·N 𝑧)))))
8064, 71, 793bitr4d 220 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (((𝑢 ·N 𝑢) ·N (𝑥 ·N 𝑤)) <N ((𝑢 ·N 𝑢) ·N (𝑦 ·N 𝑧)) ↔ (((𝑣 ·N 𝑦) +N (𝑢 ·N 𝑥)) ·N (𝑢 ·N 𝑤)) <N ((𝑢 ·N 𝑦) ·N ((𝑣 ·N 𝑤) +N (𝑢 ·N 𝑧)))))
8148, 56, 803bitrd 214 . . 3 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ([⟨𝑥, 𝑦⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ↔ (((𝑣 ·N 𝑦) +N (𝑢 ·N 𝑥)) ·N (𝑢 ·N 𝑤)) <N ((𝑢 ·N 𝑦) ·N ((𝑣 ·N 𝑤) +N (𝑢 ·N 𝑧)))))
8238, 46, 813bitr4rd 221 . 2 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ([⟨𝑥, 𝑦⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ↔ ([⟨𝑣, 𝑢⟩] ~Q +Q [⟨𝑥, 𝑦⟩] ~Q ) <Q ([⟨𝑣, 𝑢⟩] ~Q +Q [⟨𝑧, 𝑤⟩] ~Q )))
831, 5, 9, 13, 823ecoptocl 6713 1 ((𝐴Q𝐵Q𝐶Q) → (𝐴 <Q 𝐵 ↔ (𝐶 +Q 𝐴) <Q (𝐶 +Q 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981   = wceq 1373  wcel 2176  cop 3636   class class class wbr 4045  (class class class)co 5946  [cec 6620  Ncnpi 7387   +N cpli 7388   ·N cmi 7389   <N clti 7390   ~Q ceq 7394  Qcnq 7395   +Q cplq 7397   <Q cltq 7400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-eprel 4337  df-id 4341  df-iord 4414  df-on 4416  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-recs 6393  df-irdg 6458  df-oadd 6508  df-omul 6509  df-er 6622  df-ec 6624  df-qs 6628  df-ni 7419  df-pli 7420  df-mi 7421  df-lti 7422  df-plpq 7459  df-enq 7462  df-nqqs 7463  df-plqqs 7464  df-ltnqqs 7468
This theorem is referenced by:  ltanqi  7517  lt2addnq  7519  ltaddnq  7522  prarloclemlt  7608  prarloclemcalc  7617  addlocprlemgt  7649  addclpr  7652  prmuloclemcalc  7680  distrlem4prl  7699  distrlem4pru  7700  ltexprlemopl  7716  ltexprlemopu  7718  ltexprlemdisj  7721  ltexprlemloc  7722  ltexprlemfl  7724  ltexprlemfu  7726  aptiprleml  7754  aptiprlemu  7755  cauappcvgprlemopl  7761  cauappcvgprlemlol  7762  cauappcvgprlemdisj  7766  cauappcvgprlemloc  7767  cauappcvgprlemladdfu  7769  cauappcvgprlemladdru  7771  cauappcvgprlemladdrl  7772  cauappcvgprlem1  7774  caucvgprlemnkj  7781  caucvgprlemnbj  7782  caucvgprlemm  7783  caucvgprlemopl  7784  caucvgprlemlol  7785  caucvgprlemloc  7790  caucvgprlemladdfu  7792  caucvgprlemladdrl  7793  caucvgprprlemml  7809  caucvgprprlemopl  7812  caucvgprprlemlol  7813
  Copyright terms: Public domain W3C validator