Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > caovdir2d | GIF version |
Description: Convert an operation distributive law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.) |
Ref | Expression |
---|---|
caovdir2d.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐹(𝑥𝐺𝑧))) |
caovdir2d.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
caovdir2d.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑆) |
caovdir2d.4 | ⊢ (𝜑 → 𝐶 ∈ 𝑆) |
caovdir2d.cl | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) |
caovdir2d.com | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥)) |
Ref | Expression |
---|---|
caovdir2d | ⊢ (𝜑 → ((𝐴𝐹𝐵)𝐺𝐶) = ((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caovdir2d.1 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐹(𝑥𝐺𝑧))) | |
2 | caovdir2d.4 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑆) | |
3 | caovdir2d.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
4 | caovdir2d.3 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑆) | |
5 | 1, 2, 3, 4 | caovdid 6028 | . 2 ⊢ (𝜑 → (𝐶𝐺(𝐴𝐹𝐵)) = ((𝐶𝐺𝐴)𝐹(𝐶𝐺𝐵))) |
6 | caovdir2d.com | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥)) | |
7 | caovdir2d.cl | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) | |
8 | 7, 3, 4 | caovcld 6006 | . . 3 ⊢ (𝜑 → (𝐴𝐹𝐵) ∈ 𝑆) |
9 | 6, 8, 2 | caovcomd 6009 | . 2 ⊢ (𝜑 → ((𝐴𝐹𝐵)𝐺𝐶) = (𝐶𝐺(𝐴𝐹𝐵))) |
10 | 6, 3, 2 | caovcomd 6009 | . . 3 ⊢ (𝜑 → (𝐴𝐺𝐶) = (𝐶𝐺𝐴)) |
11 | 6, 4, 2 | caovcomd 6009 | . . 3 ⊢ (𝜑 → (𝐵𝐺𝐶) = (𝐶𝐺𝐵)) |
12 | 10, 11 | oveq12d 5871 | . 2 ⊢ (𝜑 → ((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐶)) = ((𝐶𝐺𝐴)𝐹(𝐶𝐺𝐵))) |
13 | 5, 9, 12 | 3eqtr4d 2213 | 1 ⊢ (𝜑 → ((𝐴𝐹𝐵)𝐺𝐶) = ((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 973 = wceq 1348 ∈ wcel 2141 (class class class)co 5853 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-iota 5160 df-fv 5206 df-ov 5856 |
This theorem is referenced by: addcmpblnq 7329 ltanqg 7362 addcmpblnq0 7405 mulasssrg 7720 mulgt0sr 7740 mulextsr1lem 7742 |
Copyright terms: Public domain | W3C validator |