ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caovdir2d GIF version

Theorem caovdir2d 6029
Description: Convert an operation distributive law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.)
Hypotheses
Ref Expression
caovdir2d.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐹(𝑥𝐺𝑧)))
caovdir2d.2 (𝜑𝐴𝑆)
caovdir2d.3 (𝜑𝐵𝑆)
caovdir2d.4 (𝜑𝐶𝑆)
caovdir2d.cl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
caovdir2d.com ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥))
Assertion
Ref Expression
caovdir2d (𝜑 → ((𝐴𝐹𝐵)𝐺𝐶) = ((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐶)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝑥,𝐺,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧

Proof of Theorem caovdir2d
StepHypRef Expression
1 caovdir2d.1 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐹(𝑥𝐺𝑧)))
2 caovdir2d.4 . . 3 (𝜑𝐶𝑆)
3 caovdir2d.2 . . 3 (𝜑𝐴𝑆)
4 caovdir2d.3 . . 3 (𝜑𝐵𝑆)
51, 2, 3, 4caovdid 6028 . 2 (𝜑 → (𝐶𝐺(𝐴𝐹𝐵)) = ((𝐶𝐺𝐴)𝐹(𝐶𝐺𝐵)))
6 caovdir2d.com . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥))
7 caovdir2d.cl . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
87, 3, 4caovcld 6006 . . 3 (𝜑 → (𝐴𝐹𝐵) ∈ 𝑆)
96, 8, 2caovcomd 6009 . 2 (𝜑 → ((𝐴𝐹𝐵)𝐺𝐶) = (𝐶𝐺(𝐴𝐹𝐵)))
106, 3, 2caovcomd 6009 . . 3 (𝜑 → (𝐴𝐺𝐶) = (𝐶𝐺𝐴))
116, 4, 2caovcomd 6009 . . 3 (𝜑 → (𝐵𝐺𝐶) = (𝐶𝐺𝐵))
1210, 11oveq12d 5871 . 2 (𝜑 → ((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐶)) = ((𝐶𝐺𝐴)𝐹(𝐶𝐺𝐵)))
135, 9, 123eqtr4d 2213 1 (𝜑 → ((𝐴𝐹𝐵)𝐺𝐶) = ((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 973   = wceq 1348  wcel 2141  (class class class)co 5853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-iota 5160  df-fv 5206  df-ov 5856
This theorem is referenced by:  addcmpblnq  7329  ltanqg  7362  addcmpblnq0  7405  mulasssrg  7720  mulgt0sr  7740  mulextsr1lem  7742
  Copyright terms: Public domain W3C validator