| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caovdir2d | GIF version | ||
| Description: Convert an operation distributive law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.) |
| Ref | Expression |
|---|---|
| caovdir2d.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐹(𝑥𝐺𝑧))) |
| caovdir2d.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
| caovdir2d.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑆) |
| caovdir2d.4 | ⊢ (𝜑 → 𝐶 ∈ 𝑆) |
| caovdir2d.cl | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) |
| caovdir2d.com | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥)) |
| Ref | Expression |
|---|---|
| caovdir2d | ⊢ (𝜑 → ((𝐴𝐹𝐵)𝐺𝐶) = ((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caovdir2d.1 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐹(𝑥𝐺𝑧))) | |
| 2 | caovdir2d.4 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑆) | |
| 3 | caovdir2d.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
| 4 | caovdir2d.3 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑆) | |
| 5 | 1, 2, 3, 4 | caovdid 6099 | . 2 ⊢ (𝜑 → (𝐶𝐺(𝐴𝐹𝐵)) = ((𝐶𝐺𝐴)𝐹(𝐶𝐺𝐵))) |
| 6 | caovdir2d.com | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥)) | |
| 7 | caovdir2d.cl | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) | |
| 8 | 7, 3, 4 | caovcld 6077 | . . 3 ⊢ (𝜑 → (𝐴𝐹𝐵) ∈ 𝑆) |
| 9 | 6, 8, 2 | caovcomd 6080 | . 2 ⊢ (𝜑 → ((𝐴𝐹𝐵)𝐺𝐶) = (𝐶𝐺(𝐴𝐹𝐵))) |
| 10 | 6, 3, 2 | caovcomd 6080 | . . 3 ⊢ (𝜑 → (𝐴𝐺𝐶) = (𝐶𝐺𝐴)) |
| 11 | 6, 4, 2 | caovcomd 6080 | . . 3 ⊢ (𝜑 → (𝐵𝐺𝐶) = (𝐶𝐺𝐵)) |
| 12 | 10, 11 | oveq12d 5940 | . 2 ⊢ (𝜑 → ((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐶)) = ((𝐶𝐺𝐴)𝐹(𝐶𝐺𝐵))) |
| 13 | 5, 9, 12 | 3eqtr4d 2239 | 1 ⊢ (𝜑 → ((𝐴𝐹𝐵)𝐺𝐶) = ((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 (class class class)co 5922 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 |
| This theorem is referenced by: addcmpblnq 7434 ltanqg 7467 addcmpblnq0 7510 mulasssrg 7825 mulgt0sr 7845 mulextsr1lem 7847 |
| Copyright terms: Public domain | W3C validator |