Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > caovord2d | GIF version |
Description: Operation ordering law with commuted arguments. (Contributed by Mario Carneiro, 30-Dec-2014.) |
Ref | Expression |
---|---|
caovordg.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑥𝑅𝑦 ↔ (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦))) |
caovordd.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
caovordd.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑆) |
caovordd.4 | ⊢ (𝜑 → 𝐶 ∈ 𝑆) |
caovord2d.com | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥)) |
Ref | Expression |
---|---|
caovord2d | ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ (𝐴𝐹𝐶)𝑅(𝐵𝐹𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caovordg.1 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑥𝑅𝑦 ↔ (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦))) | |
2 | caovordd.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
3 | caovordd.3 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑆) | |
4 | caovordd.4 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑆) | |
5 | 1, 2, 3, 4 | caovordd 6010 | . 2 ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵))) |
6 | caovord2d.com | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥)) | |
7 | 6, 4, 2 | caovcomd 5998 | . . 3 ⊢ (𝜑 → (𝐶𝐹𝐴) = (𝐴𝐹𝐶)) |
8 | 6, 4, 3 | caovcomd 5998 | . . 3 ⊢ (𝜑 → (𝐶𝐹𝐵) = (𝐵𝐹𝐶)) |
9 | 7, 8 | breq12d 3995 | . 2 ⊢ (𝜑 → ((𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵) ↔ (𝐴𝐹𝐶)𝑅(𝐵𝐹𝐶))) |
10 | 5, 9 | bitrd 187 | 1 ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ (𝐴𝐹𝐶)𝑅(𝐵𝐹𝐶))) |
Copyright terms: Public domain | W3C validator |