ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caovord2d GIF version

Theorem caovord2d 6011
Description: Operation ordering law with commuted arguments. (Contributed by Mario Carneiro, 30-Dec-2014.)
Hypotheses
Ref Expression
caovordg.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → (𝑥𝑅𝑦 ↔ (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦)))
caovordd.2 (𝜑𝐴𝑆)
caovordd.3 (𝜑𝐵𝑆)
caovordd.4 (𝜑𝐶𝑆)
caovord2d.com ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
Assertion
Ref Expression
caovord2d (𝜑 → (𝐴𝑅𝐵 ↔ (𝐴𝐹𝐶)𝑅(𝐵𝐹𝐶)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧

Proof of Theorem caovord2d
StepHypRef Expression
1 caovordg.1 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → (𝑥𝑅𝑦 ↔ (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦)))
2 caovordd.2 . . 3 (𝜑𝐴𝑆)
3 caovordd.3 . . 3 (𝜑𝐵𝑆)
4 caovordd.4 . . 3 (𝜑𝐶𝑆)
51, 2, 3, 4caovordd 6010 . 2 (𝜑 → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵)))
6 caovord2d.com . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
76, 4, 2caovcomd 5998 . . 3 (𝜑 → (𝐶𝐹𝐴) = (𝐴𝐹𝐶))
86, 4, 3caovcomd 5998 . . 3 (𝜑 → (𝐶𝐹𝐵) = (𝐵𝐹𝐶))
97, 8breq12d 3995 . 2 (𝜑 → ((𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵) ↔ (𝐴𝐹𝐶)𝑅(𝐵𝐹𝐶)))
105, 9bitrd 187 1 (𝜑 → (𝐴𝑅𝐵 ↔ (𝐴𝐹𝐶)𝑅(𝐵𝐹𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 968   = wceq 1343  wcel 2136   class class class wbr 3982  (class class class)co 5842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-iota 5153  df-fv 5196  df-ov 5845
This theorem is referenced by:  caovord3d  6012  genplt2i  7451  addnqprllem  7468  addnqprulem  7469  mulnqprl  7509  mulnqpru  7510  distrlem4prl  7525  distrlem4pru  7526  1idprl  7531  1idpru  7532  ltexprlemdisj  7547  ltexprlemloc  7548  ltexprlemfl  7550  ltexprlemfu  7552  prplnqu  7561  recexprlem1ssl  7574  recexprlem1ssu  7575  aptiprleml  7580  aptiprlemu  7581  caucvgprlemcanl  7585  cauappcvgprlemlol  7588  cauappcvgprlemloc  7593  cauappcvgprlemladdfu  7595  cauappcvgprlemladdru  7597  cauappcvgprlemladdrl  7598  cauappcvgprlem1  7600  caucvgprlemnkj  7607  caucvgprlemnbj  7608  caucvgprlemlol  7611  caucvgprlemloc  7616  caucvgprlemladdfu  7618  caucvgprlemladdrl  7619  caucvgprprlemnkltj  7630  caucvgprprlemnbj  7634  caucvgprprlemmu  7636  caucvgprprlemlol  7639  caucvgprprlemloc  7644  caucvgprprlemexbt  7647  caucvgprprlemexb  7648  caucvgprprlemaddq  7649  lttrsr  7703  ltsosr  7705  prsrlt  7728  caucvgsrlemoffcau  7739  caucvgsrlemoffgt1  7740  caucvgsrlemoffres  7741  caucvgsr  7743
  Copyright terms: Public domain W3C validator