ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordpipqqs GIF version

Theorem ordpipqqs 7030
Description: Ordering of positive fractions in terms of positive integers. (Contributed by Jim Kingdon, 14-Sep-2019.)
Assertion
Ref Expression
ordpipqqs (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → ([⟨𝐴, 𝐵⟩] ~Q <Q [⟨𝐶, 𝐷⟩] ~Q ↔ (𝐴 ·N 𝐷) <N (𝐵 ·N 𝐶)))

Proof of Theorem ordpipqqs
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 enqex 7016 . 2 ~Q ∈ V
2 enqer 7014 . 2 ~Q Er (N × N)
3 df-nqqs 7004 . 2 Q = ((N × N) / ~Q )
4 df-ltnqqs 7009 . 2 <Q = {⟨𝑥, 𝑦⟩ ∣ ((𝑥Q𝑦Q) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = [⟨𝑧, 𝑤⟩] ~Q𝑦 = [⟨𝑣, 𝑢⟩] ~Q ) ∧ (𝑧 ·N 𝑢) <N (𝑤 ·N 𝑣)))}
5 enqeceq 7015 . . . . 5 (((𝑧N𝑤N) ∧ (𝐴N𝐵N)) → ([⟨𝑧, 𝑤⟩] ~Q = [⟨𝐴, 𝐵⟩] ~Q ↔ (𝑧 ·N 𝐵) = (𝑤 ·N 𝐴)))
6 enqeceq 7015 . . . . . 6 (((𝑣N𝑢N) ∧ (𝐶N𝐷N)) → ([⟨𝑣, 𝑢⟩] ~Q = [⟨𝐶, 𝐷⟩] ~Q ↔ (𝑣 ·N 𝐷) = (𝑢 ·N 𝐶)))
7 eqcom 2097 . . . . . 6 ((𝑣 ·N 𝐷) = (𝑢 ·N 𝐶) ↔ (𝑢 ·N 𝐶) = (𝑣 ·N 𝐷))
86, 7syl6bb 195 . . . . 5 (((𝑣N𝑢N) ∧ (𝐶N𝐷N)) → ([⟨𝑣, 𝑢⟩] ~Q = [⟨𝐶, 𝐷⟩] ~Q ↔ (𝑢 ·N 𝐶) = (𝑣 ·N 𝐷)))
95, 8bi2anan9 574 . . . 4 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → (([⟨𝑧, 𝑤⟩] ~Q = [⟨𝐴, 𝐵⟩] ~Q ∧ [⟨𝑣, 𝑢⟩] ~Q = [⟨𝐶, 𝐷⟩] ~Q ) ↔ ((𝑧 ·N 𝐵) = (𝑤 ·N 𝐴) ∧ (𝑢 ·N 𝐶) = (𝑣 ·N 𝐷))))
10 oveq12 5699 . . . . 5 (((𝑧 ·N 𝐵) = (𝑤 ·N 𝐴) ∧ (𝑢 ·N 𝐶) = (𝑣 ·N 𝐷)) → ((𝑧 ·N 𝐵) ·N (𝑢 ·N 𝐶)) = ((𝑤 ·N 𝐴) ·N (𝑣 ·N 𝐷)))
11 simplll 501 . . . . . . 7 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → 𝑧N)
12 simprlr 506 . . . . . . 7 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → 𝑢N)
13 simplrr 504 . . . . . . 7 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → 𝐵N)
14 mulcompig 6987 . . . . . . . 8 ((𝑥N𝑦N) → (𝑥 ·N 𝑦) = (𝑦 ·N 𝑥))
1514adantl 272 . . . . . . 7 (((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) ∧ (𝑥N𝑦N)) → (𝑥 ·N 𝑦) = (𝑦 ·N 𝑥))
16 mulasspig 6988 . . . . . . . 8 ((𝑥N𝑦N𝑓N) → ((𝑥 ·N 𝑦) ·N 𝑓) = (𝑥 ·N (𝑦 ·N 𝑓)))
1716adantl 272 . . . . . . 7 (((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) ∧ (𝑥N𝑦N𝑓N)) → ((𝑥 ·N 𝑦) ·N 𝑓) = (𝑥 ·N (𝑦 ·N 𝑓)))
18 simprrl 507 . . . . . . 7 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → 𝐶N)
19 mulclpi 6984 . . . . . . . 8 ((𝑥N𝑦N) → (𝑥 ·N 𝑦) ∈ N)
2019adantl 272 . . . . . . 7 (((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) ∧ (𝑥N𝑦N)) → (𝑥 ·N 𝑦) ∈ N)
2111, 12, 13, 15, 17, 18, 20caov4d 5867 . . . . . 6 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → ((𝑧 ·N 𝑢) ·N (𝐵 ·N 𝐶)) = ((𝑧 ·N 𝐵) ·N (𝑢 ·N 𝐶)))
22 simpllr 502 . . . . . . 7 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → 𝑤N)
23 simprll 505 . . . . . . 7 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → 𝑣N)
24 simplrl 503 . . . . . . 7 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → 𝐴N)
25 simprrr 508 . . . . . . 7 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → 𝐷N)
2622, 23, 24, 15, 17, 25, 20caov4d 5867 . . . . . 6 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → ((𝑤 ·N 𝑣) ·N (𝐴 ·N 𝐷)) = ((𝑤 ·N 𝐴) ·N (𝑣 ·N 𝐷)))
2721, 26eqeq12d 2109 . . . . 5 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → (((𝑧 ·N 𝑢) ·N (𝐵 ·N 𝐶)) = ((𝑤 ·N 𝑣) ·N (𝐴 ·N 𝐷)) ↔ ((𝑧 ·N 𝐵) ·N (𝑢 ·N 𝐶)) = ((𝑤 ·N 𝐴) ·N (𝑣 ·N 𝐷))))
2810, 27syl5ibr 155 . . . 4 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → (((𝑧 ·N 𝐵) = (𝑤 ·N 𝐴) ∧ (𝑢 ·N 𝐶) = (𝑣 ·N 𝐷)) → ((𝑧 ·N 𝑢) ·N (𝐵 ·N 𝐶)) = ((𝑤 ·N 𝑣) ·N (𝐴 ·N 𝐷))))
299, 28sylbid 149 . . 3 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → (([⟨𝑧, 𝑤⟩] ~Q = [⟨𝐴, 𝐵⟩] ~Q ∧ [⟨𝑣, 𝑢⟩] ~Q = [⟨𝐶, 𝐷⟩] ~Q ) → ((𝑧 ·N 𝑢) ·N (𝐵 ·N 𝐶)) = ((𝑤 ·N 𝑣) ·N (𝐴 ·N 𝐷))))
30 ltmpig 6995 . . . . 5 ((𝑥N𝑦N𝑓N) → (𝑥 <N 𝑦 ↔ (𝑓 ·N 𝑥) <N (𝑓 ·N 𝑦)))
3130adantl 272 . . . 4 (((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) ∧ (𝑥N𝑦N𝑓N)) → (𝑥 <N 𝑦 ↔ (𝑓 ·N 𝑥) <N (𝑓 ·N 𝑦)))
3220, 11, 12caovcld 5836 . . . 4 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → (𝑧 ·N 𝑢) ∈ N)
3320, 13, 18caovcld 5836 . . . 4 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → (𝐵 ·N 𝐶) ∈ N)
3420, 22, 23caovcld 5836 . . . 4 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → (𝑤 ·N 𝑣) ∈ N)
3520, 24, 25caovcld 5836 . . . 4 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → (𝐴 ·N 𝐷) ∈ N)
3631, 32, 33, 34, 15, 35caovord3d 5853 . . 3 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → (((𝑧 ·N 𝑢) ·N (𝐵 ·N 𝐶)) = ((𝑤 ·N 𝑣) ·N (𝐴 ·N 𝐷)) → ((𝑧 ·N 𝑢) <N (𝑤 ·N 𝑣) ↔ (𝐴 ·N 𝐷) <N (𝐵 ·N 𝐶))))
3729, 36syld 45 . 2 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → (([⟨𝑧, 𝑤⟩] ~Q = [⟨𝐴, 𝐵⟩] ~Q ∧ [⟨𝑣, 𝑢⟩] ~Q = [⟨𝐶, 𝐷⟩] ~Q ) → ((𝑧 ·N 𝑢) <N (𝑤 ·N 𝑣) ↔ (𝐴 ·N 𝐷) <N (𝐵 ·N 𝐶))))
381, 2, 3, 4, 37brecop 6422 1 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → ([⟨𝐴, 𝐵⟩] ~Q <Q [⟨𝐶, 𝐷⟩] ~Q ↔ (𝐴 ·N 𝐷) <N (𝐵 ·N 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 927   = wceq 1296  wcel 1445  cop 3469   class class class wbr 3867  (class class class)co 5690  [cec 6330  Ncnpi 6928   ·N cmi 6930   <N clti 6931   ~Q ceq 6935  Qcnq 6936   <Q cltq 6941
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-coll 3975  ax-sep 3978  ax-nul 3986  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-iinf 4431
This theorem depends on definitions:  df-bi 116  df-dc 784  df-3or 928  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-ral 2375  df-rex 2376  df-reu 2377  df-rab 2379  df-v 2635  df-sbc 2855  df-csb 2948  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-nul 3303  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-int 3711  df-iun 3754  df-br 3868  df-opab 3922  df-mpt 3923  df-tr 3959  df-eprel 4140  df-id 4144  df-iord 4217  df-on 4219  df-suc 4222  df-iom 4434  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-f1 5054  df-fo 5055  df-f1o 5056  df-fv 5057  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-1st 5949  df-2nd 5950  df-recs 6108  df-irdg 6173  df-oadd 6223  df-omul 6224  df-er 6332  df-ec 6334  df-qs 6338  df-ni 6960  df-mi 6962  df-lti 6963  df-enq 7003  df-nqqs 7004  df-ltnqqs 7009
This theorem is referenced by:  nqtri3or  7052  ltdcnq  7053  ltsonq  7054  ltanqg  7056  ltmnqg  7057  1lt2nq  7062  ltexnqq  7064  archnqq  7073  prarloclemarch2  7075  ltnnnq  7079  prarloclemlt  7149
  Copyright terms: Public domain W3C validator