ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordpipqqs GIF version

Theorem ordpipqqs 7386
Description: Ordering of positive fractions in terms of positive integers. (Contributed by Jim Kingdon, 14-Sep-2019.)
Assertion
Ref Expression
ordpipqqs (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → ([⟨𝐴, 𝐵⟩] ~Q <Q [⟨𝐶, 𝐷⟩] ~Q ↔ (𝐴 ·N 𝐷) <N (𝐵 ·N 𝐶)))

Proof of Theorem ordpipqqs
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 enqex 7372 . 2 ~Q ∈ V
2 enqer 7370 . 2 ~Q Er (N × N)
3 df-nqqs 7360 . 2 Q = ((N × N) / ~Q )
4 df-ltnqqs 7365 . 2 <Q = {⟨𝑥, 𝑦⟩ ∣ ((𝑥Q𝑦Q) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = [⟨𝑧, 𝑤⟩] ~Q𝑦 = [⟨𝑣, 𝑢⟩] ~Q ) ∧ (𝑧 ·N 𝑢) <N (𝑤 ·N 𝑣)))}
5 enqeceq 7371 . . . . 5 (((𝑧N𝑤N) ∧ (𝐴N𝐵N)) → ([⟨𝑧, 𝑤⟩] ~Q = [⟨𝐴, 𝐵⟩] ~Q ↔ (𝑧 ·N 𝐵) = (𝑤 ·N 𝐴)))
6 enqeceq 7371 . . . . . 6 (((𝑣N𝑢N) ∧ (𝐶N𝐷N)) → ([⟨𝑣, 𝑢⟩] ~Q = [⟨𝐶, 𝐷⟩] ~Q ↔ (𝑣 ·N 𝐷) = (𝑢 ·N 𝐶)))
7 eqcom 2189 . . . . . 6 ((𝑣 ·N 𝐷) = (𝑢 ·N 𝐶) ↔ (𝑢 ·N 𝐶) = (𝑣 ·N 𝐷))
86, 7bitrdi 196 . . . . 5 (((𝑣N𝑢N) ∧ (𝐶N𝐷N)) → ([⟨𝑣, 𝑢⟩] ~Q = [⟨𝐶, 𝐷⟩] ~Q ↔ (𝑢 ·N 𝐶) = (𝑣 ·N 𝐷)))
95, 8bi2anan9 606 . . . 4 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → (([⟨𝑧, 𝑤⟩] ~Q = [⟨𝐴, 𝐵⟩] ~Q ∧ [⟨𝑣, 𝑢⟩] ~Q = [⟨𝐶, 𝐷⟩] ~Q ) ↔ ((𝑧 ·N 𝐵) = (𝑤 ·N 𝐴) ∧ (𝑢 ·N 𝐶) = (𝑣 ·N 𝐷))))
10 oveq12 5897 . . . . 5 (((𝑧 ·N 𝐵) = (𝑤 ·N 𝐴) ∧ (𝑢 ·N 𝐶) = (𝑣 ·N 𝐷)) → ((𝑧 ·N 𝐵) ·N (𝑢 ·N 𝐶)) = ((𝑤 ·N 𝐴) ·N (𝑣 ·N 𝐷)))
11 simplll 533 . . . . . . 7 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → 𝑧N)
12 simprlr 538 . . . . . . 7 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → 𝑢N)
13 simplrr 536 . . . . . . 7 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → 𝐵N)
14 mulcompig 7343 . . . . . . . 8 ((𝑥N𝑦N) → (𝑥 ·N 𝑦) = (𝑦 ·N 𝑥))
1514adantl 277 . . . . . . 7 (((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) ∧ (𝑥N𝑦N)) → (𝑥 ·N 𝑦) = (𝑦 ·N 𝑥))
16 mulasspig 7344 . . . . . . . 8 ((𝑥N𝑦N𝑓N) → ((𝑥 ·N 𝑦) ·N 𝑓) = (𝑥 ·N (𝑦 ·N 𝑓)))
1716adantl 277 . . . . . . 7 (((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) ∧ (𝑥N𝑦N𝑓N)) → ((𝑥 ·N 𝑦) ·N 𝑓) = (𝑥 ·N (𝑦 ·N 𝑓)))
18 simprrl 539 . . . . . . 7 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → 𝐶N)
19 mulclpi 7340 . . . . . . . 8 ((𝑥N𝑦N) → (𝑥 ·N 𝑦) ∈ N)
2019adantl 277 . . . . . . 7 (((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) ∧ (𝑥N𝑦N)) → (𝑥 ·N 𝑦) ∈ N)
2111, 12, 13, 15, 17, 18, 20caov4d 6072 . . . . . 6 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → ((𝑧 ·N 𝑢) ·N (𝐵 ·N 𝐶)) = ((𝑧 ·N 𝐵) ·N (𝑢 ·N 𝐶)))
22 simpllr 534 . . . . . . 7 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → 𝑤N)
23 simprll 537 . . . . . . 7 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → 𝑣N)
24 simplrl 535 . . . . . . 7 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → 𝐴N)
25 simprrr 540 . . . . . . 7 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → 𝐷N)
2622, 23, 24, 15, 17, 25, 20caov4d 6072 . . . . . 6 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → ((𝑤 ·N 𝑣) ·N (𝐴 ·N 𝐷)) = ((𝑤 ·N 𝐴) ·N (𝑣 ·N 𝐷)))
2721, 26eqeq12d 2202 . . . . 5 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → (((𝑧 ·N 𝑢) ·N (𝐵 ·N 𝐶)) = ((𝑤 ·N 𝑣) ·N (𝐴 ·N 𝐷)) ↔ ((𝑧 ·N 𝐵) ·N (𝑢 ·N 𝐶)) = ((𝑤 ·N 𝐴) ·N (𝑣 ·N 𝐷))))
2810, 27imbitrrid 156 . . . 4 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → (((𝑧 ·N 𝐵) = (𝑤 ·N 𝐴) ∧ (𝑢 ·N 𝐶) = (𝑣 ·N 𝐷)) → ((𝑧 ·N 𝑢) ·N (𝐵 ·N 𝐶)) = ((𝑤 ·N 𝑣) ·N (𝐴 ·N 𝐷))))
299, 28sylbid 150 . . 3 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → (([⟨𝑧, 𝑤⟩] ~Q = [⟨𝐴, 𝐵⟩] ~Q ∧ [⟨𝑣, 𝑢⟩] ~Q = [⟨𝐶, 𝐷⟩] ~Q ) → ((𝑧 ·N 𝑢) ·N (𝐵 ·N 𝐶)) = ((𝑤 ·N 𝑣) ·N (𝐴 ·N 𝐷))))
30 ltmpig 7351 . . . . 5 ((𝑥N𝑦N𝑓N) → (𝑥 <N 𝑦 ↔ (𝑓 ·N 𝑥) <N (𝑓 ·N 𝑦)))
3130adantl 277 . . . 4 (((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) ∧ (𝑥N𝑦N𝑓N)) → (𝑥 <N 𝑦 ↔ (𝑓 ·N 𝑥) <N (𝑓 ·N 𝑦)))
3220, 11, 12caovcld 6041 . . . 4 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → (𝑧 ·N 𝑢) ∈ N)
3320, 13, 18caovcld 6041 . . . 4 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → (𝐵 ·N 𝐶) ∈ N)
3420, 22, 23caovcld 6041 . . . 4 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → (𝑤 ·N 𝑣) ∈ N)
3520, 24, 25caovcld 6041 . . . 4 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → (𝐴 ·N 𝐷) ∈ N)
3631, 32, 33, 34, 15, 35caovord3d 6058 . . 3 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → (((𝑧 ·N 𝑢) ·N (𝐵 ·N 𝐶)) = ((𝑤 ·N 𝑣) ·N (𝐴 ·N 𝐷)) → ((𝑧 ·N 𝑢) <N (𝑤 ·N 𝑣) ↔ (𝐴 ·N 𝐷) <N (𝐵 ·N 𝐶))))
3729, 36syld 45 . 2 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → (([⟨𝑧, 𝑤⟩] ~Q = [⟨𝐴, 𝐵⟩] ~Q ∧ [⟨𝑣, 𝑢⟩] ~Q = [⟨𝐶, 𝐷⟩] ~Q ) → ((𝑧 ·N 𝑢) <N (𝑤 ·N 𝑣) ↔ (𝐴 ·N 𝐷) <N (𝐵 ·N 𝐶))))
381, 2, 3, 4, 37brecop 6638 1 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → ([⟨𝐴, 𝐵⟩] ~Q <Q [⟨𝐶, 𝐷⟩] ~Q ↔ (𝐴 ·N 𝐷) <N (𝐵 ·N 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 979   = wceq 1363  wcel 2158  cop 3607   class class class wbr 4015  (class class class)co 5888  [cec 6546  Ncnpi 7284   ·N cmi 7286   <N clti 7287   ~Q ceq 7291  Qcnq 7292   <Q cltq 7297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-eprel 4301  df-id 4305  df-iord 4378  df-on 4380  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6154  df-2nd 6155  df-recs 6319  df-irdg 6384  df-oadd 6434  df-omul 6435  df-er 6548  df-ec 6550  df-qs 6554  df-ni 7316  df-mi 7318  df-lti 7319  df-enq 7359  df-nqqs 7360  df-ltnqqs 7365
This theorem is referenced by:  nqtri3or  7408  ltdcnq  7409  ltsonq  7410  ltanqg  7412  ltmnqg  7413  1lt2nq  7418  ltexnqq  7420  archnqq  7429  prarloclemarch2  7431  ltnnnq  7435  prarloclemlt  7505
  Copyright terms: Public domain W3C validator