ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordpipqqs GIF version

Theorem ordpipqqs 7529
Description: Ordering of positive fractions in terms of positive integers. (Contributed by Jim Kingdon, 14-Sep-2019.)
Assertion
Ref Expression
ordpipqqs (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → ([⟨𝐴, 𝐵⟩] ~Q <Q [⟨𝐶, 𝐷⟩] ~Q ↔ (𝐴 ·N 𝐷) <N (𝐵 ·N 𝐶)))

Proof of Theorem ordpipqqs
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 enqex 7515 . 2 ~Q ∈ V
2 enqer 7513 . 2 ~Q Er (N × N)
3 df-nqqs 7503 . 2 Q = ((N × N) / ~Q )
4 df-ltnqqs 7508 . 2 <Q = {⟨𝑥, 𝑦⟩ ∣ ((𝑥Q𝑦Q) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = [⟨𝑧, 𝑤⟩] ~Q𝑦 = [⟨𝑣, 𝑢⟩] ~Q ) ∧ (𝑧 ·N 𝑢) <N (𝑤 ·N 𝑣)))}
5 enqeceq 7514 . . . . 5 (((𝑧N𝑤N) ∧ (𝐴N𝐵N)) → ([⟨𝑧, 𝑤⟩] ~Q = [⟨𝐴, 𝐵⟩] ~Q ↔ (𝑧 ·N 𝐵) = (𝑤 ·N 𝐴)))
6 enqeceq 7514 . . . . . 6 (((𝑣N𝑢N) ∧ (𝐶N𝐷N)) → ([⟨𝑣, 𝑢⟩] ~Q = [⟨𝐶, 𝐷⟩] ~Q ↔ (𝑣 ·N 𝐷) = (𝑢 ·N 𝐶)))
7 eqcom 2211 . . . . . 6 ((𝑣 ·N 𝐷) = (𝑢 ·N 𝐶) ↔ (𝑢 ·N 𝐶) = (𝑣 ·N 𝐷))
86, 7bitrdi 196 . . . . 5 (((𝑣N𝑢N) ∧ (𝐶N𝐷N)) → ([⟨𝑣, 𝑢⟩] ~Q = [⟨𝐶, 𝐷⟩] ~Q ↔ (𝑢 ·N 𝐶) = (𝑣 ·N 𝐷)))
95, 8bi2anan9 608 . . . 4 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → (([⟨𝑧, 𝑤⟩] ~Q = [⟨𝐴, 𝐵⟩] ~Q ∧ [⟨𝑣, 𝑢⟩] ~Q = [⟨𝐶, 𝐷⟩] ~Q ) ↔ ((𝑧 ·N 𝐵) = (𝑤 ·N 𝐴) ∧ (𝑢 ·N 𝐶) = (𝑣 ·N 𝐷))))
10 oveq12 5983 . . . . 5 (((𝑧 ·N 𝐵) = (𝑤 ·N 𝐴) ∧ (𝑢 ·N 𝐶) = (𝑣 ·N 𝐷)) → ((𝑧 ·N 𝐵) ·N (𝑢 ·N 𝐶)) = ((𝑤 ·N 𝐴) ·N (𝑣 ·N 𝐷)))
11 simplll 533 . . . . . . 7 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → 𝑧N)
12 simprlr 538 . . . . . . 7 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → 𝑢N)
13 simplrr 536 . . . . . . 7 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → 𝐵N)
14 mulcompig 7486 . . . . . . . 8 ((𝑥N𝑦N) → (𝑥 ·N 𝑦) = (𝑦 ·N 𝑥))
1514adantl 277 . . . . . . 7 (((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) ∧ (𝑥N𝑦N)) → (𝑥 ·N 𝑦) = (𝑦 ·N 𝑥))
16 mulasspig 7487 . . . . . . . 8 ((𝑥N𝑦N𝑓N) → ((𝑥 ·N 𝑦) ·N 𝑓) = (𝑥 ·N (𝑦 ·N 𝑓)))
1716adantl 277 . . . . . . 7 (((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) ∧ (𝑥N𝑦N𝑓N)) → ((𝑥 ·N 𝑦) ·N 𝑓) = (𝑥 ·N (𝑦 ·N 𝑓)))
18 simprrl 539 . . . . . . 7 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → 𝐶N)
19 mulclpi 7483 . . . . . . . 8 ((𝑥N𝑦N) → (𝑥 ·N 𝑦) ∈ N)
2019adantl 277 . . . . . . 7 (((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) ∧ (𝑥N𝑦N)) → (𝑥 ·N 𝑦) ∈ N)
2111, 12, 13, 15, 17, 18, 20caov4d 6161 . . . . . 6 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → ((𝑧 ·N 𝑢) ·N (𝐵 ·N 𝐶)) = ((𝑧 ·N 𝐵) ·N (𝑢 ·N 𝐶)))
22 simpllr 534 . . . . . . 7 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → 𝑤N)
23 simprll 537 . . . . . . 7 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → 𝑣N)
24 simplrl 535 . . . . . . 7 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → 𝐴N)
25 simprrr 540 . . . . . . 7 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → 𝐷N)
2622, 23, 24, 15, 17, 25, 20caov4d 6161 . . . . . 6 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → ((𝑤 ·N 𝑣) ·N (𝐴 ·N 𝐷)) = ((𝑤 ·N 𝐴) ·N (𝑣 ·N 𝐷)))
2721, 26eqeq12d 2224 . . . . 5 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → (((𝑧 ·N 𝑢) ·N (𝐵 ·N 𝐶)) = ((𝑤 ·N 𝑣) ·N (𝐴 ·N 𝐷)) ↔ ((𝑧 ·N 𝐵) ·N (𝑢 ·N 𝐶)) = ((𝑤 ·N 𝐴) ·N (𝑣 ·N 𝐷))))
2810, 27imbitrrid 156 . . . 4 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → (((𝑧 ·N 𝐵) = (𝑤 ·N 𝐴) ∧ (𝑢 ·N 𝐶) = (𝑣 ·N 𝐷)) → ((𝑧 ·N 𝑢) ·N (𝐵 ·N 𝐶)) = ((𝑤 ·N 𝑣) ·N (𝐴 ·N 𝐷))))
299, 28sylbid 150 . . 3 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → (([⟨𝑧, 𝑤⟩] ~Q = [⟨𝐴, 𝐵⟩] ~Q ∧ [⟨𝑣, 𝑢⟩] ~Q = [⟨𝐶, 𝐷⟩] ~Q ) → ((𝑧 ·N 𝑢) ·N (𝐵 ·N 𝐶)) = ((𝑤 ·N 𝑣) ·N (𝐴 ·N 𝐷))))
30 ltmpig 7494 . . . . 5 ((𝑥N𝑦N𝑓N) → (𝑥 <N 𝑦 ↔ (𝑓 ·N 𝑥) <N (𝑓 ·N 𝑦)))
3130adantl 277 . . . 4 (((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) ∧ (𝑥N𝑦N𝑓N)) → (𝑥 <N 𝑦 ↔ (𝑓 ·N 𝑥) <N (𝑓 ·N 𝑦)))
3220, 11, 12caovcld 6130 . . . 4 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → (𝑧 ·N 𝑢) ∈ N)
3320, 13, 18caovcld 6130 . . . 4 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → (𝐵 ·N 𝐶) ∈ N)
3420, 22, 23caovcld 6130 . . . 4 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → (𝑤 ·N 𝑣) ∈ N)
3520, 24, 25caovcld 6130 . . . 4 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → (𝐴 ·N 𝐷) ∈ N)
3631, 32, 33, 34, 15, 35caovord3d 6147 . . 3 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → (((𝑧 ·N 𝑢) ·N (𝐵 ·N 𝐶)) = ((𝑤 ·N 𝑣) ·N (𝐴 ·N 𝐷)) → ((𝑧 ·N 𝑢) <N (𝑤 ·N 𝑣) ↔ (𝐴 ·N 𝐷) <N (𝐵 ·N 𝐶))))
3729, 36syld 45 . 2 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → (([⟨𝑧, 𝑤⟩] ~Q = [⟨𝐴, 𝐵⟩] ~Q ∧ [⟨𝑣, 𝑢⟩] ~Q = [⟨𝐶, 𝐷⟩] ~Q ) → ((𝑧 ·N 𝑢) <N (𝑤 ·N 𝑣) ↔ (𝐴 ·N 𝐷) <N (𝐵 ·N 𝐶))))
381, 2, 3, 4, 37brecop 6742 1 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → ([⟨𝐴, 𝐵⟩] ~Q <Q [⟨𝐶, 𝐷⟩] ~Q ↔ (𝐴 ·N 𝐷) <N (𝐵 ·N 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 983   = wceq 1375  wcel 2180  cop 3649   class class class wbr 4062  (class class class)co 5974  [cec 6648  Ncnpi 7427   ·N cmi 7429   <N clti 7430   ~Q ceq 7434  Qcnq 7435   <Q cltq 7440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-eprel 4357  df-id 4361  df-iord 4434  df-on 4436  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-irdg 6486  df-oadd 6536  df-omul 6537  df-er 6650  df-ec 6652  df-qs 6656  df-ni 7459  df-mi 7461  df-lti 7462  df-enq 7502  df-nqqs 7503  df-ltnqqs 7508
This theorem is referenced by:  nqtri3or  7551  ltdcnq  7552  ltsonq  7553  ltanqg  7555  ltmnqg  7556  1lt2nq  7561  ltexnqq  7563  archnqq  7572  prarloclemarch2  7574  ltnnnq  7578  prarloclemlt  7648
  Copyright terms: Public domain W3C validator