ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordpipqqs GIF version

Theorem ordpipqqs 7494
Description: Ordering of positive fractions in terms of positive integers. (Contributed by Jim Kingdon, 14-Sep-2019.)
Assertion
Ref Expression
ordpipqqs (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → ([⟨𝐴, 𝐵⟩] ~Q <Q [⟨𝐶, 𝐷⟩] ~Q ↔ (𝐴 ·N 𝐷) <N (𝐵 ·N 𝐶)))

Proof of Theorem ordpipqqs
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 enqex 7480 . 2 ~Q ∈ V
2 enqer 7478 . 2 ~Q Er (N × N)
3 df-nqqs 7468 . 2 Q = ((N × N) / ~Q )
4 df-ltnqqs 7473 . 2 <Q = {⟨𝑥, 𝑦⟩ ∣ ((𝑥Q𝑦Q) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = [⟨𝑧, 𝑤⟩] ~Q𝑦 = [⟨𝑣, 𝑢⟩] ~Q ) ∧ (𝑧 ·N 𝑢) <N (𝑤 ·N 𝑣)))}
5 enqeceq 7479 . . . . 5 (((𝑧N𝑤N) ∧ (𝐴N𝐵N)) → ([⟨𝑧, 𝑤⟩] ~Q = [⟨𝐴, 𝐵⟩] ~Q ↔ (𝑧 ·N 𝐵) = (𝑤 ·N 𝐴)))
6 enqeceq 7479 . . . . . 6 (((𝑣N𝑢N) ∧ (𝐶N𝐷N)) → ([⟨𝑣, 𝑢⟩] ~Q = [⟨𝐶, 𝐷⟩] ~Q ↔ (𝑣 ·N 𝐷) = (𝑢 ·N 𝐶)))
7 eqcom 2208 . . . . . 6 ((𝑣 ·N 𝐷) = (𝑢 ·N 𝐶) ↔ (𝑢 ·N 𝐶) = (𝑣 ·N 𝐷))
86, 7bitrdi 196 . . . . 5 (((𝑣N𝑢N) ∧ (𝐶N𝐷N)) → ([⟨𝑣, 𝑢⟩] ~Q = [⟨𝐶, 𝐷⟩] ~Q ↔ (𝑢 ·N 𝐶) = (𝑣 ·N 𝐷)))
95, 8bi2anan9 606 . . . 4 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → (([⟨𝑧, 𝑤⟩] ~Q = [⟨𝐴, 𝐵⟩] ~Q ∧ [⟨𝑣, 𝑢⟩] ~Q = [⟨𝐶, 𝐷⟩] ~Q ) ↔ ((𝑧 ·N 𝐵) = (𝑤 ·N 𝐴) ∧ (𝑢 ·N 𝐶) = (𝑣 ·N 𝐷))))
10 oveq12 5960 . . . . 5 (((𝑧 ·N 𝐵) = (𝑤 ·N 𝐴) ∧ (𝑢 ·N 𝐶) = (𝑣 ·N 𝐷)) → ((𝑧 ·N 𝐵) ·N (𝑢 ·N 𝐶)) = ((𝑤 ·N 𝐴) ·N (𝑣 ·N 𝐷)))
11 simplll 533 . . . . . . 7 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → 𝑧N)
12 simprlr 538 . . . . . . 7 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → 𝑢N)
13 simplrr 536 . . . . . . 7 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → 𝐵N)
14 mulcompig 7451 . . . . . . . 8 ((𝑥N𝑦N) → (𝑥 ·N 𝑦) = (𝑦 ·N 𝑥))
1514adantl 277 . . . . . . 7 (((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) ∧ (𝑥N𝑦N)) → (𝑥 ·N 𝑦) = (𝑦 ·N 𝑥))
16 mulasspig 7452 . . . . . . . 8 ((𝑥N𝑦N𝑓N) → ((𝑥 ·N 𝑦) ·N 𝑓) = (𝑥 ·N (𝑦 ·N 𝑓)))
1716adantl 277 . . . . . . 7 (((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) ∧ (𝑥N𝑦N𝑓N)) → ((𝑥 ·N 𝑦) ·N 𝑓) = (𝑥 ·N (𝑦 ·N 𝑓)))
18 simprrl 539 . . . . . . 7 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → 𝐶N)
19 mulclpi 7448 . . . . . . . 8 ((𝑥N𝑦N) → (𝑥 ·N 𝑦) ∈ N)
2019adantl 277 . . . . . . 7 (((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) ∧ (𝑥N𝑦N)) → (𝑥 ·N 𝑦) ∈ N)
2111, 12, 13, 15, 17, 18, 20caov4d 6138 . . . . . 6 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → ((𝑧 ·N 𝑢) ·N (𝐵 ·N 𝐶)) = ((𝑧 ·N 𝐵) ·N (𝑢 ·N 𝐶)))
22 simpllr 534 . . . . . . 7 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → 𝑤N)
23 simprll 537 . . . . . . 7 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → 𝑣N)
24 simplrl 535 . . . . . . 7 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → 𝐴N)
25 simprrr 540 . . . . . . 7 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → 𝐷N)
2622, 23, 24, 15, 17, 25, 20caov4d 6138 . . . . . 6 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → ((𝑤 ·N 𝑣) ·N (𝐴 ·N 𝐷)) = ((𝑤 ·N 𝐴) ·N (𝑣 ·N 𝐷)))
2721, 26eqeq12d 2221 . . . . 5 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → (((𝑧 ·N 𝑢) ·N (𝐵 ·N 𝐶)) = ((𝑤 ·N 𝑣) ·N (𝐴 ·N 𝐷)) ↔ ((𝑧 ·N 𝐵) ·N (𝑢 ·N 𝐶)) = ((𝑤 ·N 𝐴) ·N (𝑣 ·N 𝐷))))
2810, 27imbitrrid 156 . . . 4 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → (((𝑧 ·N 𝐵) = (𝑤 ·N 𝐴) ∧ (𝑢 ·N 𝐶) = (𝑣 ·N 𝐷)) → ((𝑧 ·N 𝑢) ·N (𝐵 ·N 𝐶)) = ((𝑤 ·N 𝑣) ·N (𝐴 ·N 𝐷))))
299, 28sylbid 150 . . 3 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → (([⟨𝑧, 𝑤⟩] ~Q = [⟨𝐴, 𝐵⟩] ~Q ∧ [⟨𝑣, 𝑢⟩] ~Q = [⟨𝐶, 𝐷⟩] ~Q ) → ((𝑧 ·N 𝑢) ·N (𝐵 ·N 𝐶)) = ((𝑤 ·N 𝑣) ·N (𝐴 ·N 𝐷))))
30 ltmpig 7459 . . . . 5 ((𝑥N𝑦N𝑓N) → (𝑥 <N 𝑦 ↔ (𝑓 ·N 𝑥) <N (𝑓 ·N 𝑦)))
3130adantl 277 . . . 4 (((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) ∧ (𝑥N𝑦N𝑓N)) → (𝑥 <N 𝑦 ↔ (𝑓 ·N 𝑥) <N (𝑓 ·N 𝑦)))
3220, 11, 12caovcld 6107 . . . 4 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → (𝑧 ·N 𝑢) ∈ N)
3320, 13, 18caovcld 6107 . . . 4 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → (𝐵 ·N 𝐶) ∈ N)
3420, 22, 23caovcld 6107 . . . 4 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → (𝑤 ·N 𝑣) ∈ N)
3520, 24, 25caovcld 6107 . . . 4 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → (𝐴 ·N 𝐷) ∈ N)
3631, 32, 33, 34, 15, 35caovord3d 6124 . . 3 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → (((𝑧 ·N 𝑢) ·N (𝐵 ·N 𝐶)) = ((𝑤 ·N 𝑣) ·N (𝐴 ·N 𝐷)) → ((𝑧 ·N 𝑢) <N (𝑤 ·N 𝑣) ↔ (𝐴 ·N 𝐷) <N (𝐵 ·N 𝐶))))
3729, 36syld 45 . 2 ((((𝑧N𝑤N) ∧ (𝐴N𝐵N)) ∧ ((𝑣N𝑢N) ∧ (𝐶N𝐷N))) → (([⟨𝑧, 𝑤⟩] ~Q = [⟨𝐴, 𝐵⟩] ~Q ∧ [⟨𝑣, 𝑢⟩] ~Q = [⟨𝐶, 𝐷⟩] ~Q ) → ((𝑧 ·N 𝑢) <N (𝑤 ·N 𝑣) ↔ (𝐴 ·N 𝐷) <N (𝐵 ·N 𝐶))))
381, 2, 3, 4, 37brecop 6719 1 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → ([⟨𝐴, 𝐵⟩] ~Q <Q [⟨𝐶, 𝐷⟩] ~Q ↔ (𝐴 ·N 𝐷) <N (𝐵 ·N 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981   = wceq 1373  wcel 2177  cop 3637   class class class wbr 4047  (class class class)co 5951  [cec 6625  Ncnpi 7392   ·N cmi 7394   <N clti 7395   ~Q ceq 7399  Qcnq 7400   <Q cltq 7405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-eprel 4340  df-id 4344  df-iord 4417  df-on 4419  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-irdg 6463  df-oadd 6513  df-omul 6514  df-er 6627  df-ec 6629  df-qs 6633  df-ni 7424  df-mi 7426  df-lti 7427  df-enq 7467  df-nqqs 7468  df-ltnqqs 7473
This theorem is referenced by:  nqtri3or  7516  ltdcnq  7517  ltsonq  7518  ltanqg  7520  ltmnqg  7521  1lt2nq  7526  ltexnqq  7528  archnqq  7537  prarloclemarch2  7539  ltnnnq  7543  prarloclemlt  7613
  Copyright terms: Public domain W3C validator