Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > funiunfvdmf | GIF version |
Description: The indexed union of a function's values is the union of its image under the index class. This version of funiunfvdm 5742 uses a bound-variable hypothesis in place of a distinct variable condition. (Contributed by Jim Kingdon, 10-Jan-2019.) |
Ref | Expression |
---|---|
funiunfvf.1 | ⊢ Ⅎ𝑥𝐹 |
Ref | Expression |
---|---|
funiunfvdmf | ⊢ (𝐹 Fn 𝐴 → ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) = ∪ (𝐹 “ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funiunfvf.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
2 | nfcv 2312 | . . . 4 ⊢ Ⅎ𝑥𝑧 | |
3 | 1, 2 | nffv 5506 | . . 3 ⊢ Ⅎ𝑥(𝐹‘𝑧) |
4 | nfcv 2312 | . . 3 ⊢ Ⅎ𝑧(𝐹‘𝑥) | |
5 | fveq2 5496 | . . 3 ⊢ (𝑧 = 𝑥 → (𝐹‘𝑧) = (𝐹‘𝑥)) | |
6 | 3, 4, 5 | cbviun 3910 | . 2 ⊢ ∪ 𝑧 ∈ 𝐴 (𝐹‘𝑧) = ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) |
7 | funiunfvdm 5742 | . 2 ⊢ (𝐹 Fn 𝐴 → ∪ 𝑧 ∈ 𝐴 (𝐹‘𝑧) = ∪ (𝐹 “ 𝐴)) | |
8 | 6, 7 | eqtr3id 2217 | 1 ⊢ (𝐹 Fn 𝐴 → ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) = ∪ (𝐹 “ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 Ⅎwnfc 2299 ∪ cuni 3796 ∪ ciun 3873 “ cima 4614 Fn wfn 5193 ‘cfv 5198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-fv 5206 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |