![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > funiunfvdmf | GIF version |
Description: The indexed union of a function's values is the union of its image under the index class. This version of funiunfvdm 5780 uses a bound-variable hypothesis in place of a distinct variable condition. (Contributed by Jim Kingdon, 10-Jan-2019.) |
Ref | Expression |
---|---|
funiunfvf.1 | ⊢ Ⅎ𝑥𝐹 |
Ref | Expression |
---|---|
funiunfvdmf | ⊢ (𝐹 Fn 𝐴 → ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) = ∪ (𝐹 “ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funiunfvf.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
2 | nfcv 2332 | . . . 4 ⊢ Ⅎ𝑥𝑧 | |
3 | 1, 2 | nffv 5540 | . . 3 ⊢ Ⅎ𝑥(𝐹‘𝑧) |
4 | nfcv 2332 | . . 3 ⊢ Ⅎ𝑧(𝐹‘𝑥) | |
5 | fveq2 5530 | . . 3 ⊢ (𝑧 = 𝑥 → (𝐹‘𝑧) = (𝐹‘𝑥)) | |
6 | 3, 4, 5 | cbviun 3938 | . 2 ⊢ ∪ 𝑧 ∈ 𝐴 (𝐹‘𝑧) = ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) |
7 | funiunfvdm 5780 | . 2 ⊢ (𝐹 Fn 𝐴 → ∪ 𝑧 ∈ 𝐴 (𝐹‘𝑧) = ∪ (𝐹 “ 𝐴)) | |
8 | 6, 7 | eqtr3id 2236 | 1 ⊢ (𝐹 Fn 𝐴 → ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) = ∪ (𝐹 “ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 Ⅎwnfc 2319 ∪ cuni 3824 ∪ ciun 3901 “ cima 4644 Fn wfn 5226 ‘cfv 5231 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4189 ax-pr 4224 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-v 2754 df-sbc 2978 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4308 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-rn 4652 df-res 4653 df-ima 4654 df-iota 5193 df-fun 5233 df-fn 5234 df-fv 5239 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |