ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funiunfvdmf GIF version

Theorem funiunfvdmf 5481
Description: The indexed union of a function's values is the union of its image under the index class. This version of funiunfvdm 5480 uses a bound-variable hypothesis in place of a distinct variable condition. (Contributed by Jim Kingdon, 10-Jan-2019.)
Hypothesis
Ref Expression
funiunfvf.1 𝑥𝐹
Assertion
Ref Expression
funiunfvdmf (𝐹 Fn 𝐴 𝑥𝐴 (𝐹𝑥) = (𝐹𝐴))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem funiunfvdmf
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 funiunfvf.1 . . . 4 𝑥𝐹
2 nfcv 2223 . . . 4 𝑥𝑧
31, 2nffv 5258 . . 3 𝑥(𝐹𝑧)
4 nfcv 2223 . . 3 𝑧(𝐹𝑥)
5 fveq2 5251 . . 3 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
63, 4, 5cbviun 3741 . 2 𝑧𝐴 (𝐹𝑧) = 𝑥𝐴 (𝐹𝑥)
7 funiunfvdm 5480 . 2 (𝐹 Fn 𝐴 𝑧𝐴 (𝐹𝑧) = (𝐹𝐴))
86, 7syl5eqr 2129 1 (𝐹 Fn 𝐴 𝑥𝐴 (𝐹𝑥) = (𝐹𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1285  wnfc 2210   cuni 3627   ciun 3704  cima 4402   Fn wfn 4962  cfv 4967
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3922  ax-pow 3974  ax-pr 3999
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-v 2614  df-sbc 2827  df-un 2988  df-in 2990  df-ss 2997  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-iun 3706  df-br 3812  df-opab 3866  df-mpt 3867  df-id 4083  df-xp 4405  df-rel 4406  df-cnv 4407  df-co 4408  df-dm 4409  df-rn 4410  df-res 4411  df-ima 4412  df-iota 4932  df-fun 4969  df-fn 4970  df-fv 4975
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator