| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funiunfvdmf | GIF version | ||
| Description: The indexed union of a function's values is the union of its image under the index class. This version of funiunfvdm 5834 uses a bound-variable hypothesis in place of a distinct variable condition. (Contributed by Jim Kingdon, 10-Jan-2019.) |
| Ref | Expression |
|---|---|
| funiunfvf.1 | ⊢ Ⅎ𝑥𝐹 |
| Ref | Expression |
|---|---|
| funiunfvdmf | ⊢ (𝐹 Fn 𝐴 → ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) = ∪ (𝐹 “ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funiunfvf.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
| 2 | nfcv 2348 | . . . 4 ⊢ Ⅎ𝑥𝑧 | |
| 3 | 1, 2 | nffv 5588 | . . 3 ⊢ Ⅎ𝑥(𝐹‘𝑧) |
| 4 | nfcv 2348 | . . 3 ⊢ Ⅎ𝑧(𝐹‘𝑥) | |
| 5 | fveq2 5578 | . . 3 ⊢ (𝑧 = 𝑥 → (𝐹‘𝑧) = (𝐹‘𝑥)) | |
| 6 | 3, 4, 5 | cbviun 3964 | . 2 ⊢ ∪ 𝑧 ∈ 𝐴 (𝐹‘𝑧) = ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) |
| 7 | funiunfvdm 5834 | . 2 ⊢ (𝐹 Fn 𝐴 → ∪ 𝑧 ∈ 𝐴 (𝐹‘𝑧) = ∪ (𝐹 “ 𝐴)) | |
| 8 | 6, 7 | eqtr3id 2252 | 1 ⊢ (𝐹 Fn 𝐴 → ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) = ∪ (𝐹 “ 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 Ⅎwnfc 2335 ∪ cuni 3850 ∪ ciun 3927 “ cima 4679 Fn wfn 5267 ‘cfv 5272 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-fv 5280 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |