Step | Hyp | Ref
| Expression |
1 | | elex 2737 |
. 2
⊢ (𝐴 ∈ (𝐵 × 𝐶) → 𝐴 ∈ V) |
2 | | elex 2737 |
. . . 4
⊢ (∪ dom {𝐴} ∈ 𝐵 → ∪ dom
{𝐴} ∈
V) |
3 | | elex 2737 |
. . . 4
⊢ (∪ ran {𝐴} ∈ 𝐶 → ∪ ran
{𝐴} ∈
V) |
4 | 2, 3 | anim12i 336 |
. . 3
⊢ ((∪ dom {𝐴} ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶) → (∪ dom {𝐴} ∈ V ∧ ∪ ran {𝐴} ∈ V)) |
5 | | opexg 4206 |
. . . . 5
⊢ ((∪ dom {𝐴} ∈ V ∧ ∪ ran {𝐴} ∈ V) → 〈∪ dom {𝐴}, ∪ ran {𝐴}〉 ∈
V) |
6 | 5 | adantl 275 |
. . . 4
⊢ ((𝐴 = 〈∪ dom {𝐴}, ∪ ran {𝐴}〉 ∧ (∪ dom {𝐴} ∈ V ∧ ∪ ran {𝐴} ∈ V)) → 〈∪ dom {𝐴}, ∪ ran {𝐴}〉 ∈
V) |
7 | | eleq1 2229 |
. . . . 5
⊢ (𝐴 = 〈∪ dom {𝐴}, ∪ ran {𝐴}〉 → (𝐴 ∈ V ↔ 〈∪ dom {𝐴}, ∪ ran {𝐴}〉 ∈
V)) |
8 | 7 | adantr 274 |
. . . 4
⊢ ((𝐴 = 〈∪ dom {𝐴}, ∪ ran {𝐴}〉 ∧ (∪ dom {𝐴} ∈ V ∧ ∪ ran {𝐴} ∈ V)) → (𝐴 ∈ V ↔ 〈∪ dom {𝐴}, ∪ ran {𝐴}〉 ∈
V)) |
9 | 6, 8 | mpbird 166 |
. . 3
⊢ ((𝐴 = 〈∪ dom {𝐴}, ∪ ran {𝐴}〉 ∧ (∪ dom {𝐴} ∈ V ∧ ∪ ran {𝐴} ∈ V)) → 𝐴 ∈ V) |
10 | 4, 9 | sylan2 284 |
. 2
⊢ ((𝐴 = 〈∪ dom {𝐴}, ∪ ran {𝐴}〉 ∧ (∪ dom {𝐴} ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶)) → 𝐴 ∈ V) |
11 | | elxp 4621 |
. . . 4
⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) |
12 | 11 | a1i 9 |
. . 3
⊢ (𝐴 ∈ V → (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)))) |
13 | | sneq 3587 |
. . . . . . . . . . . . 13
⊢ (𝐴 = 〈𝑥, 𝑦〉 → {𝐴} = {〈𝑥, 𝑦〉}) |
14 | 13 | rneqd 4833 |
. . . . . . . . . . . 12
⊢ (𝐴 = 〈𝑥, 𝑦〉 → ran {𝐴} = ran {〈𝑥, 𝑦〉}) |
15 | 14 | unieqd 3800 |
. . . . . . . . . . 11
⊢ (𝐴 = 〈𝑥, 𝑦〉 → ∪
ran {𝐴} = ∪ ran {〈𝑥, 𝑦〉}) |
16 | | vex 2729 |
. . . . . . . . . . . 12
⊢ 𝑥 ∈ V |
17 | | vex 2729 |
. . . . . . . . . . . 12
⊢ 𝑦 ∈ V |
18 | 16, 17 | op2nda 5088 |
. . . . . . . . . . 11
⊢ ∪ ran {〈𝑥, 𝑦〉} = 𝑦 |
19 | 15, 18 | eqtr2di 2216 |
. . . . . . . . . 10
⊢ (𝐴 = 〈𝑥, 𝑦〉 → 𝑦 = ∪ ran {𝐴}) |
20 | 19 | pm4.71ri 390 |
. . . . . . . . 9
⊢ (𝐴 = 〈𝑥, 𝑦〉 ↔ (𝑦 = ∪ ran {𝐴} ∧ 𝐴 = 〈𝑥, 𝑦〉)) |
21 | 20 | anbi1i 454 |
. . . . . . . 8
⊢ ((𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ((𝑦 = ∪ ran {𝐴} ∧ 𝐴 = 〈𝑥, 𝑦〉) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) |
22 | | anass 399 |
. . . . . . . 8
⊢ (((𝑦 = ∪
ran {𝐴} ∧ 𝐴 = 〈𝑥, 𝑦〉) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ (𝑦 = ∪ ran {𝐴} ∧ (𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)))) |
23 | 21, 22 | bitri 183 |
. . . . . . 7
⊢ ((𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ (𝑦 = ∪ ran {𝐴} ∧ (𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)))) |
24 | 23 | exbii 1593 |
. . . . . 6
⊢
(∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑦(𝑦 = ∪ ran {𝐴} ∧ (𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)))) |
25 | | snexg 4163 |
. . . . . . . . 9
⊢ (𝐴 ∈ V → {𝐴} ∈ V) |
26 | | rnexg 4869 |
. . . . . . . . 9
⊢ ({𝐴} ∈ V → ran {𝐴} ∈ V) |
27 | 25, 26 | syl 14 |
. . . . . . . 8
⊢ (𝐴 ∈ V → ran {𝐴} ∈ V) |
28 | | uniexg 4417 |
. . . . . . . 8
⊢ (ran
{𝐴} ∈ V → ∪ ran {𝐴} ∈ V) |
29 | 27, 28 | syl 14 |
. . . . . . 7
⊢ (𝐴 ∈ V → ∪ ran {𝐴} ∈ V) |
30 | | opeq2 3759 |
. . . . . . . . . 10
⊢ (𝑦 = ∪
ran {𝐴} → 〈𝑥, 𝑦〉 = 〈𝑥, ∪ ran {𝐴}〉) |
31 | 30 | eqeq2d 2177 |
. . . . . . . . 9
⊢ (𝑦 = ∪
ran {𝐴} → (𝐴 = 〈𝑥, 𝑦〉 ↔ 𝐴 = 〈𝑥, ∪ ran {𝐴}〉)) |
32 | | eleq1 2229 |
. . . . . . . . . 10
⊢ (𝑦 = ∪
ran {𝐴} → (𝑦 ∈ 𝐶 ↔ ∪ ran
{𝐴} ∈ 𝐶)) |
33 | 32 | anbi2d 460 |
. . . . . . . . 9
⊢ (𝑦 = ∪
ran {𝐴} → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶))) |
34 | 31, 33 | anbi12d 465 |
. . . . . . . 8
⊢ (𝑦 = ∪
ran {𝐴} → ((𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ (𝐴 = 〈𝑥, ∪ ran {𝐴}〉 ∧ (𝑥 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶)))) |
35 | 34 | ceqsexgv 2855 |
. . . . . . 7
⊢ (∪ ran {𝐴} ∈ V → (∃𝑦(𝑦 = ∪ ran {𝐴} ∧ (𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) ↔ (𝐴 = 〈𝑥, ∪ ran {𝐴}〉 ∧ (𝑥 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶)))) |
36 | 29, 35 | syl 14 |
. . . . . 6
⊢ (𝐴 ∈ V → (∃𝑦(𝑦 = ∪ ran {𝐴} ∧ (𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) ↔ (𝐴 = 〈𝑥, ∪ ran {𝐴}〉 ∧ (𝑥 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶)))) |
37 | 24, 36 | syl5bb 191 |
. . . . 5
⊢ (𝐴 ∈ V → (∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ (𝐴 = 〈𝑥, ∪ ran {𝐴}〉 ∧ (𝑥 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶)))) |
38 | | sneq 3587 |
. . . . . . . . . . . 12
⊢ (𝐴 = 〈𝑥, ∪ ran {𝐴}〉 → {𝐴} = {〈𝑥, ∪ ran {𝐴}〉}) |
39 | 38 | dmeqd 4806 |
. . . . . . . . . . 11
⊢ (𝐴 = 〈𝑥, ∪ ran {𝐴}〉 → dom {𝐴} = dom {〈𝑥, ∪
ran {𝐴}〉}) |
40 | 39 | unieqd 3800 |
. . . . . . . . . 10
⊢ (𝐴 = 〈𝑥, ∪ ran {𝐴}〉 → ∪ dom {𝐴} = ∪ dom
{〈𝑥, ∪ ran {𝐴}〉}) |
41 | 40 | adantl 275 |
. . . . . . . . 9
⊢ ((𝐴 ∈ V ∧ 𝐴 = 〈𝑥, ∪ ran {𝐴}〉) → ∪ dom {𝐴} = ∪ dom
{〈𝑥, ∪ ran {𝐴}〉}) |
42 | | dmsnopg 5075 |
. . . . . . . . . . . . 13
⊢ (∪ ran {𝐴} ∈ V → dom {〈𝑥, ∪
ran {𝐴}〉} = {𝑥}) |
43 | 29, 42 | syl 14 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ V → dom
{〈𝑥, ∪ ran {𝐴}〉} = {𝑥}) |
44 | 43 | unieqd 3800 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ V → ∪ dom {〈𝑥, ∪ ran {𝐴}〉} = ∪ {𝑥}) |
45 | 16 | unisn 3805 |
. . . . . . . . . . 11
⊢ ∪ {𝑥}
= 𝑥 |
46 | 44, 45 | eqtrdi 2215 |
. . . . . . . . . 10
⊢ (𝐴 ∈ V → ∪ dom {〈𝑥, ∪ ran {𝐴}〉} = 𝑥) |
47 | 46 | adantr 274 |
. . . . . . . . 9
⊢ ((𝐴 ∈ V ∧ 𝐴 = 〈𝑥, ∪ ran {𝐴}〉) → ∪ dom {〈𝑥, ∪ ran {𝐴}〉} = 𝑥) |
48 | 41, 47 | eqtr2d 2199 |
. . . . . . . 8
⊢ ((𝐴 ∈ V ∧ 𝐴 = 〈𝑥, ∪ ran {𝐴}〉) → 𝑥 = ∪
dom {𝐴}) |
49 | 48 | ex 114 |
. . . . . . 7
⊢ (𝐴 ∈ V → (𝐴 = 〈𝑥, ∪ ran {𝐴}〉 → 𝑥 = ∪
dom {𝐴})) |
50 | 49 | pm4.71rd 392 |
. . . . . 6
⊢ (𝐴 ∈ V → (𝐴 = 〈𝑥, ∪ ran {𝐴}〉 ↔ (𝑥 = ∪
dom {𝐴} ∧ 𝐴 = 〈𝑥, ∪ ran {𝐴}〉))) |
51 | 50 | anbi1d 461 |
. . . . 5
⊢ (𝐴 ∈ V → ((𝐴 = 〈𝑥, ∪ ran {𝐴}〉 ∧ (𝑥 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶)) ↔ ((𝑥 = ∪ dom {𝐴} ∧ 𝐴 = 〈𝑥, ∪ ran {𝐴}〉) ∧ (𝑥 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶)))) |
52 | | anass 399 |
. . . . . 6
⊢ (((𝑥 = ∪
dom {𝐴} ∧ 𝐴 = 〈𝑥, ∪ ran {𝐴}〉) ∧ (𝑥 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶)) ↔ (𝑥 = ∪ dom {𝐴} ∧ (𝐴 = 〈𝑥, ∪ ran {𝐴}〉 ∧ (𝑥 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶)))) |
53 | 52 | a1i 9 |
. . . . 5
⊢ (𝐴 ∈ V → (((𝑥 = ∪
dom {𝐴} ∧ 𝐴 = 〈𝑥, ∪ ran {𝐴}〉) ∧ (𝑥 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶)) ↔ (𝑥 = ∪ dom {𝐴} ∧ (𝐴 = 〈𝑥, ∪ ran {𝐴}〉 ∧ (𝑥 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶))))) |
54 | 37, 51, 53 | 3bitrd 213 |
. . . 4
⊢ (𝐴 ∈ V → (∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ (𝑥 = ∪ dom {𝐴} ∧ (𝐴 = 〈𝑥, ∪ ran {𝐴}〉 ∧ (𝑥 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶))))) |
55 | 54 | exbidv 1813 |
. . 3
⊢ (𝐴 ∈ V → (∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑥(𝑥 = ∪ dom {𝐴} ∧ (𝐴 = 〈𝑥, ∪ ran {𝐴}〉 ∧ (𝑥 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶))))) |
56 | | dmexg 4868 |
. . . . . 6
⊢ ({𝐴} ∈ V → dom {𝐴} ∈ V) |
57 | 25, 56 | syl 14 |
. . . . 5
⊢ (𝐴 ∈ V → dom {𝐴} ∈ V) |
58 | | uniexg 4417 |
. . . . 5
⊢ (dom
{𝐴} ∈ V → ∪ dom {𝐴} ∈ V) |
59 | 57, 58 | syl 14 |
. . . 4
⊢ (𝐴 ∈ V → ∪ dom {𝐴} ∈ V) |
60 | | opeq1 3758 |
. . . . . . 7
⊢ (𝑥 = ∪
dom {𝐴} → 〈𝑥, ∪
ran {𝐴}〉 = 〈∪ dom {𝐴}, ∪ ran {𝐴}〉) |
61 | 60 | eqeq2d 2177 |
. . . . . 6
⊢ (𝑥 = ∪
dom {𝐴} → (𝐴 = 〈𝑥, ∪ ran {𝐴}〉 ↔ 𝐴 = 〈∪ dom
{𝐴}, ∪ ran {𝐴}〉)) |
62 | | eleq1 2229 |
. . . . . . 7
⊢ (𝑥 = ∪
dom {𝐴} → (𝑥 ∈ 𝐵 ↔ ∪ dom
{𝐴} ∈ 𝐵)) |
63 | 62 | anbi1d 461 |
. . . . . 6
⊢ (𝑥 = ∪
dom {𝐴} → ((𝑥 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶) ↔ (∪ dom {𝐴} ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶))) |
64 | 61, 63 | anbi12d 465 |
. . . . 5
⊢ (𝑥 = ∪
dom {𝐴} → ((𝐴 = 〈𝑥, ∪ ran {𝐴}〉 ∧ (𝑥 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶)) ↔ (𝐴 = 〈∪ dom
{𝐴}, ∪ ran {𝐴}〉 ∧ (∪
dom {𝐴} ∈ 𝐵 ∧ ∪ ran {𝐴} ∈ 𝐶)))) |
65 | 64 | ceqsexgv 2855 |
. . . 4
⊢ (∪ dom {𝐴} ∈ V → (∃𝑥(𝑥 = ∪ dom {𝐴} ∧ (𝐴 = 〈𝑥, ∪ ran {𝐴}〉 ∧ (𝑥 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶))) ↔ (𝐴 = 〈∪ dom
{𝐴}, ∪ ran {𝐴}〉 ∧ (∪
dom {𝐴} ∈ 𝐵 ∧ ∪ ran {𝐴} ∈ 𝐶)))) |
66 | 59, 65 | syl 14 |
. . 3
⊢ (𝐴 ∈ V → (∃𝑥(𝑥 = ∪ dom {𝐴} ∧ (𝐴 = 〈𝑥, ∪ ran {𝐴}〉 ∧ (𝑥 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶))) ↔ (𝐴 = 〈∪ dom
{𝐴}, ∪ ran {𝐴}〉 ∧ (∪
dom {𝐴} ∈ 𝐵 ∧ ∪ ran {𝐴} ∈ 𝐶)))) |
67 | 12, 55, 66 | 3bitrd 213 |
. 2
⊢ (𝐴 ∈ V → (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = 〈∪ dom
{𝐴}, ∪ ran {𝐴}〉 ∧ (∪
dom {𝐴} ∈ 𝐵 ∧ ∪ ran {𝐴} ∈ 𝐶)))) |
68 | 1, 10, 67 | pm5.21nii 694 |
1
⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = 〈∪ dom
{𝐴}, ∪ ran {𝐴}〉 ∧ (∪
dom {𝐴} ∈ 𝐵 ∧ ∪ ran {𝐴} ∈ 𝐶))) |