| Step | Hyp | Ref
 | Expression | 
| 1 |   | elex 2774 | 
. 2
⊢ (𝐴 ∈ (𝐵 × 𝐶) → 𝐴 ∈ V) | 
| 2 |   | elex 2774 | 
. . . 4
⊢ (∪ dom {𝐴} ∈ 𝐵 → ∪ dom
{𝐴} ∈
V) | 
| 3 |   | elex 2774 | 
. . . 4
⊢ (∪ ran {𝐴} ∈ 𝐶 → ∪ ran
{𝐴} ∈
V) | 
| 4 | 2, 3 | anim12i 338 | 
. . 3
⊢ ((∪ dom {𝐴} ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶) → (∪ dom {𝐴} ∈ V ∧ ∪ ran {𝐴} ∈ V)) | 
| 5 |   | opexg 4261 | 
. . . . 5
⊢ ((∪ dom {𝐴} ∈ V ∧ ∪ ran {𝐴} ∈ V) → 〈∪ dom {𝐴}, ∪ ran {𝐴}〉 ∈
V) | 
| 6 | 5 | adantl 277 | 
. . . 4
⊢ ((𝐴 = 〈∪ dom {𝐴}, ∪ ran {𝐴}〉 ∧ (∪ dom {𝐴} ∈ V ∧ ∪ ran {𝐴} ∈ V)) → 〈∪ dom {𝐴}, ∪ ran {𝐴}〉 ∈
V) | 
| 7 |   | eleq1 2259 | 
. . . . 5
⊢ (𝐴 = 〈∪ dom {𝐴}, ∪ ran {𝐴}〉 → (𝐴 ∈ V ↔ 〈∪ dom {𝐴}, ∪ ran {𝐴}〉 ∈
V)) | 
| 8 | 7 | adantr 276 | 
. . . 4
⊢ ((𝐴 = 〈∪ dom {𝐴}, ∪ ran {𝐴}〉 ∧ (∪ dom {𝐴} ∈ V ∧ ∪ ran {𝐴} ∈ V)) → (𝐴 ∈ V ↔ 〈∪ dom {𝐴}, ∪ ran {𝐴}〉 ∈
V)) | 
| 9 | 6, 8 | mpbird 167 | 
. . 3
⊢ ((𝐴 = 〈∪ dom {𝐴}, ∪ ran {𝐴}〉 ∧ (∪ dom {𝐴} ∈ V ∧ ∪ ran {𝐴} ∈ V)) → 𝐴 ∈ V) | 
| 10 | 4, 9 | sylan2 286 | 
. 2
⊢ ((𝐴 = 〈∪ dom {𝐴}, ∪ ran {𝐴}〉 ∧ (∪ dom {𝐴} ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶)) → 𝐴 ∈ V) | 
| 11 |   | elxp 4680 | 
. . . 4
⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) | 
| 12 | 11 | a1i 9 | 
. . 3
⊢ (𝐴 ∈ V → (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)))) | 
| 13 |   | sneq 3633 | 
. . . . . . . . . . . . 13
⊢ (𝐴 = 〈𝑥, 𝑦〉 → {𝐴} = {〈𝑥, 𝑦〉}) | 
| 14 | 13 | rneqd 4895 | 
. . . . . . . . . . . 12
⊢ (𝐴 = 〈𝑥, 𝑦〉 → ran {𝐴} = ran {〈𝑥, 𝑦〉}) | 
| 15 | 14 | unieqd 3850 | 
. . . . . . . . . . 11
⊢ (𝐴 = 〈𝑥, 𝑦〉 → ∪
ran {𝐴} = ∪ ran {〈𝑥, 𝑦〉}) | 
| 16 |   | vex 2766 | 
. . . . . . . . . . . 12
⊢ 𝑥 ∈ V | 
| 17 |   | vex 2766 | 
. . . . . . . . . . . 12
⊢ 𝑦 ∈ V | 
| 18 | 16, 17 | op2nda 5154 | 
. . . . . . . . . . 11
⊢ ∪ ran {〈𝑥, 𝑦〉} = 𝑦 | 
| 19 | 15, 18 | eqtr2di 2246 | 
. . . . . . . . . 10
⊢ (𝐴 = 〈𝑥, 𝑦〉 → 𝑦 = ∪ ran {𝐴}) | 
| 20 | 19 | pm4.71ri 392 | 
. . . . . . . . 9
⊢ (𝐴 = 〈𝑥, 𝑦〉 ↔ (𝑦 = ∪ ran {𝐴} ∧ 𝐴 = 〈𝑥, 𝑦〉)) | 
| 21 | 20 | anbi1i 458 | 
. . . . . . . 8
⊢ ((𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ((𝑦 = ∪ ran {𝐴} ∧ 𝐴 = 〈𝑥, 𝑦〉) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) | 
| 22 |   | anass 401 | 
. . . . . . . 8
⊢ (((𝑦 = ∪
ran {𝐴} ∧ 𝐴 = 〈𝑥, 𝑦〉) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ (𝑦 = ∪ ran {𝐴} ∧ (𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)))) | 
| 23 | 21, 22 | bitri 184 | 
. . . . . . 7
⊢ ((𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ (𝑦 = ∪ ran {𝐴} ∧ (𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)))) | 
| 24 | 23 | exbii 1619 | 
. . . . . 6
⊢
(∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑦(𝑦 = ∪ ran {𝐴} ∧ (𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)))) | 
| 25 |   | snexg 4217 | 
. . . . . . . . 9
⊢ (𝐴 ∈ V → {𝐴} ∈ V) | 
| 26 |   | rnexg 4931 | 
. . . . . . . . 9
⊢ ({𝐴} ∈ V → ran {𝐴} ∈ V) | 
| 27 | 25, 26 | syl 14 | 
. . . . . . . 8
⊢ (𝐴 ∈ V → ran {𝐴} ∈ V) | 
| 28 |   | uniexg 4474 | 
. . . . . . . 8
⊢ (ran
{𝐴} ∈ V → ∪ ran {𝐴} ∈ V) | 
| 29 | 27, 28 | syl 14 | 
. . . . . . 7
⊢ (𝐴 ∈ V → ∪ ran {𝐴} ∈ V) | 
| 30 |   | opeq2 3809 | 
. . . . . . . . . 10
⊢ (𝑦 = ∪
ran {𝐴} → 〈𝑥, 𝑦〉 = 〈𝑥, ∪ ran {𝐴}〉) | 
| 31 | 30 | eqeq2d 2208 | 
. . . . . . . . 9
⊢ (𝑦 = ∪
ran {𝐴} → (𝐴 = 〈𝑥, 𝑦〉 ↔ 𝐴 = 〈𝑥, ∪ ran {𝐴}〉)) | 
| 32 |   | eleq1 2259 | 
. . . . . . . . . 10
⊢ (𝑦 = ∪
ran {𝐴} → (𝑦 ∈ 𝐶 ↔ ∪ ran
{𝐴} ∈ 𝐶)) | 
| 33 | 32 | anbi2d 464 | 
. . . . . . . . 9
⊢ (𝑦 = ∪
ran {𝐴} → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶))) | 
| 34 | 31, 33 | anbi12d 473 | 
. . . . . . . 8
⊢ (𝑦 = ∪
ran {𝐴} → ((𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ (𝐴 = 〈𝑥, ∪ ran {𝐴}〉 ∧ (𝑥 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶)))) | 
| 35 | 34 | ceqsexgv 2893 | 
. . . . . . 7
⊢ (∪ ran {𝐴} ∈ V → (∃𝑦(𝑦 = ∪ ran {𝐴} ∧ (𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) ↔ (𝐴 = 〈𝑥, ∪ ran {𝐴}〉 ∧ (𝑥 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶)))) | 
| 36 | 29, 35 | syl 14 | 
. . . . . 6
⊢ (𝐴 ∈ V → (∃𝑦(𝑦 = ∪ ran {𝐴} ∧ (𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) ↔ (𝐴 = 〈𝑥, ∪ ran {𝐴}〉 ∧ (𝑥 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶)))) | 
| 37 | 24, 36 | bitrid 192 | 
. . . . 5
⊢ (𝐴 ∈ V → (∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ (𝐴 = 〈𝑥, ∪ ran {𝐴}〉 ∧ (𝑥 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶)))) | 
| 38 |   | sneq 3633 | 
. . . . . . . . . . . 12
⊢ (𝐴 = 〈𝑥, ∪ ran {𝐴}〉 → {𝐴} = {〈𝑥, ∪ ran {𝐴}〉}) | 
| 39 | 38 | dmeqd 4868 | 
. . . . . . . . . . 11
⊢ (𝐴 = 〈𝑥, ∪ ran {𝐴}〉 → dom {𝐴} = dom {〈𝑥, ∪
ran {𝐴}〉}) | 
| 40 | 39 | unieqd 3850 | 
. . . . . . . . . 10
⊢ (𝐴 = 〈𝑥, ∪ ran {𝐴}〉 → ∪ dom {𝐴} = ∪ dom
{〈𝑥, ∪ ran {𝐴}〉}) | 
| 41 | 40 | adantl 277 | 
. . . . . . . . 9
⊢ ((𝐴 ∈ V ∧ 𝐴 = 〈𝑥, ∪ ran {𝐴}〉) → ∪ dom {𝐴} = ∪ dom
{〈𝑥, ∪ ran {𝐴}〉}) | 
| 42 |   | dmsnopg 5141 | 
. . . . . . . . . . . . 13
⊢ (∪ ran {𝐴} ∈ V → dom {〈𝑥, ∪
ran {𝐴}〉} = {𝑥}) | 
| 43 | 29, 42 | syl 14 | 
. . . . . . . . . . . 12
⊢ (𝐴 ∈ V → dom
{〈𝑥, ∪ ran {𝐴}〉} = {𝑥}) | 
| 44 | 43 | unieqd 3850 | 
. . . . . . . . . . 11
⊢ (𝐴 ∈ V → ∪ dom {〈𝑥, ∪ ran {𝐴}〉} = ∪ {𝑥}) | 
| 45 | 16 | unisn 3855 | 
. . . . . . . . . . 11
⊢ ∪ {𝑥}
= 𝑥 | 
| 46 | 44, 45 | eqtrdi 2245 | 
. . . . . . . . . 10
⊢ (𝐴 ∈ V → ∪ dom {〈𝑥, ∪ ran {𝐴}〉} = 𝑥) | 
| 47 | 46 | adantr 276 | 
. . . . . . . . 9
⊢ ((𝐴 ∈ V ∧ 𝐴 = 〈𝑥, ∪ ran {𝐴}〉) → ∪ dom {〈𝑥, ∪ ran {𝐴}〉} = 𝑥) | 
| 48 | 41, 47 | eqtr2d 2230 | 
. . . . . . . 8
⊢ ((𝐴 ∈ V ∧ 𝐴 = 〈𝑥, ∪ ran {𝐴}〉) → 𝑥 = ∪
dom {𝐴}) | 
| 49 | 48 | ex 115 | 
. . . . . . 7
⊢ (𝐴 ∈ V → (𝐴 = 〈𝑥, ∪ ran {𝐴}〉 → 𝑥 = ∪
dom {𝐴})) | 
| 50 | 49 | pm4.71rd 394 | 
. . . . . 6
⊢ (𝐴 ∈ V → (𝐴 = 〈𝑥, ∪ ran {𝐴}〉 ↔ (𝑥 = ∪
dom {𝐴} ∧ 𝐴 = 〈𝑥, ∪ ran {𝐴}〉))) | 
| 51 | 50 | anbi1d 465 | 
. . . . 5
⊢ (𝐴 ∈ V → ((𝐴 = 〈𝑥, ∪ ran {𝐴}〉 ∧ (𝑥 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶)) ↔ ((𝑥 = ∪ dom {𝐴} ∧ 𝐴 = 〈𝑥, ∪ ran {𝐴}〉) ∧ (𝑥 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶)))) | 
| 52 |   | anass 401 | 
. . . . . 6
⊢ (((𝑥 = ∪
dom {𝐴} ∧ 𝐴 = 〈𝑥, ∪ ran {𝐴}〉) ∧ (𝑥 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶)) ↔ (𝑥 = ∪ dom {𝐴} ∧ (𝐴 = 〈𝑥, ∪ ran {𝐴}〉 ∧ (𝑥 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶)))) | 
| 53 | 52 | a1i 9 | 
. . . . 5
⊢ (𝐴 ∈ V → (((𝑥 = ∪
dom {𝐴} ∧ 𝐴 = 〈𝑥, ∪ ran {𝐴}〉) ∧ (𝑥 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶)) ↔ (𝑥 = ∪ dom {𝐴} ∧ (𝐴 = 〈𝑥, ∪ ran {𝐴}〉 ∧ (𝑥 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶))))) | 
| 54 | 37, 51, 53 | 3bitrd 214 | 
. . . 4
⊢ (𝐴 ∈ V → (∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ (𝑥 = ∪ dom {𝐴} ∧ (𝐴 = 〈𝑥, ∪ ran {𝐴}〉 ∧ (𝑥 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶))))) | 
| 55 | 54 | exbidv 1839 | 
. . 3
⊢ (𝐴 ∈ V → (∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑥(𝑥 = ∪ dom {𝐴} ∧ (𝐴 = 〈𝑥, ∪ ran {𝐴}〉 ∧ (𝑥 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶))))) | 
| 56 |   | dmexg 4930 | 
. . . . . 6
⊢ ({𝐴} ∈ V → dom {𝐴} ∈ V) | 
| 57 | 25, 56 | syl 14 | 
. . . . 5
⊢ (𝐴 ∈ V → dom {𝐴} ∈ V) | 
| 58 |   | uniexg 4474 | 
. . . . 5
⊢ (dom
{𝐴} ∈ V → ∪ dom {𝐴} ∈ V) | 
| 59 | 57, 58 | syl 14 | 
. . . 4
⊢ (𝐴 ∈ V → ∪ dom {𝐴} ∈ V) | 
| 60 |   | opeq1 3808 | 
. . . . . . 7
⊢ (𝑥 = ∪
dom {𝐴} → 〈𝑥, ∪
ran {𝐴}〉 = 〈∪ dom {𝐴}, ∪ ran {𝐴}〉) | 
| 61 | 60 | eqeq2d 2208 | 
. . . . . 6
⊢ (𝑥 = ∪
dom {𝐴} → (𝐴 = 〈𝑥, ∪ ran {𝐴}〉 ↔ 𝐴 = 〈∪ dom
{𝐴}, ∪ ran {𝐴}〉)) | 
| 62 |   | eleq1 2259 | 
. . . . . . 7
⊢ (𝑥 = ∪
dom {𝐴} → (𝑥 ∈ 𝐵 ↔ ∪ dom
{𝐴} ∈ 𝐵)) | 
| 63 | 62 | anbi1d 465 | 
. . . . . 6
⊢ (𝑥 = ∪
dom {𝐴} → ((𝑥 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶) ↔ (∪ dom {𝐴} ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶))) | 
| 64 | 61, 63 | anbi12d 473 | 
. . . . 5
⊢ (𝑥 = ∪
dom {𝐴} → ((𝐴 = 〈𝑥, ∪ ran {𝐴}〉 ∧ (𝑥 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶)) ↔ (𝐴 = 〈∪ dom
{𝐴}, ∪ ran {𝐴}〉 ∧ (∪
dom {𝐴} ∈ 𝐵 ∧ ∪ ran {𝐴} ∈ 𝐶)))) | 
| 65 | 64 | ceqsexgv 2893 | 
. . . 4
⊢ (∪ dom {𝐴} ∈ V → (∃𝑥(𝑥 = ∪ dom {𝐴} ∧ (𝐴 = 〈𝑥, ∪ ran {𝐴}〉 ∧ (𝑥 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶))) ↔ (𝐴 = 〈∪ dom
{𝐴}, ∪ ran {𝐴}〉 ∧ (∪
dom {𝐴} ∈ 𝐵 ∧ ∪ ran {𝐴} ∈ 𝐶)))) | 
| 66 | 59, 65 | syl 14 | 
. . 3
⊢ (𝐴 ∈ V → (∃𝑥(𝑥 = ∪ dom {𝐴} ∧ (𝐴 = 〈𝑥, ∪ ran {𝐴}〉 ∧ (𝑥 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶))) ↔ (𝐴 = 〈∪ dom
{𝐴}, ∪ ran {𝐴}〉 ∧ (∪
dom {𝐴} ∈ 𝐵 ∧ ∪ ran {𝐴} ∈ 𝐶)))) | 
| 67 | 12, 55, 66 | 3bitrd 214 | 
. 2
⊢ (𝐴 ∈ V → (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = 〈∪ dom
{𝐴}, ∪ ran {𝐴}〉 ∧ (∪
dom {𝐴} ∈ 𝐵 ∧ ∪ ran {𝐴} ∈ 𝐶)))) | 
| 68 | 1, 10, 67 | pm5.21nii 705 | 
1
⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = 〈∪ dom
{𝐴}, ∪ ran {𝐴}〉 ∧ (∪
dom {𝐴} ∈ 𝐵 ∧ ∪ ran {𝐴} ∈ 𝐶))) |