ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elxp4 GIF version

Theorem elxp4 4962
Description: Membership in a cross product. This version requires no quantifiers or dummy variables. See also elxp5 4963. (Contributed by NM, 17-Feb-2004.)
Assertion
Ref Expression
elxp4 (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = ⟨ dom {𝐴}, ran {𝐴}⟩ ∧ ( dom {𝐴} ∈ 𝐵 ran {𝐴} ∈ 𝐶)))

Proof of Theorem elxp4
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2652 . 2 (𝐴 ∈ (𝐵 × 𝐶) → 𝐴 ∈ V)
2 elex 2652 . . . 4 ( dom {𝐴} ∈ 𝐵 dom {𝐴} ∈ V)
3 elex 2652 . . . 4 ( ran {𝐴} ∈ 𝐶 ran {𝐴} ∈ V)
42, 3anim12i 334 . . 3 (( dom {𝐴} ∈ 𝐵 ran {𝐴} ∈ 𝐶) → ( dom {𝐴} ∈ V ∧ ran {𝐴} ∈ V))
5 opexg 4088 . . . . 5 (( dom {𝐴} ∈ V ∧ ran {𝐴} ∈ V) → ⟨ dom {𝐴}, ran {𝐴}⟩ ∈ V)
65adantl 273 . . . 4 ((𝐴 = ⟨ dom {𝐴}, ran {𝐴}⟩ ∧ ( dom {𝐴} ∈ V ∧ ran {𝐴} ∈ V)) → ⟨ dom {𝐴}, ran {𝐴}⟩ ∈ V)
7 eleq1 2162 . . . . 5 (𝐴 = ⟨ dom {𝐴}, ran {𝐴}⟩ → (𝐴 ∈ V ↔ ⟨ dom {𝐴}, ran {𝐴}⟩ ∈ V))
87adantr 272 . . . 4 ((𝐴 = ⟨ dom {𝐴}, ran {𝐴}⟩ ∧ ( dom {𝐴} ∈ V ∧ ran {𝐴} ∈ V)) → (𝐴 ∈ V ↔ ⟨ dom {𝐴}, ran {𝐴}⟩ ∈ V))
96, 8mpbird 166 . . 3 ((𝐴 = ⟨ dom {𝐴}, ran {𝐴}⟩ ∧ ( dom {𝐴} ∈ V ∧ ran {𝐴} ∈ V)) → 𝐴 ∈ V)
104, 9sylan2 282 . 2 ((𝐴 = ⟨ dom {𝐴}, ran {𝐴}⟩ ∧ ( dom {𝐴} ∈ 𝐵 ran {𝐴} ∈ 𝐶)) → 𝐴 ∈ V)
11 elxp 4494 . . . 4 (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)))
1211a1i 9 . . 3 (𝐴 ∈ V → (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶))))
13 sneq 3485 . . . . . . . . . . . . 13 (𝐴 = ⟨𝑥, 𝑦⟩ → {𝐴} = {⟨𝑥, 𝑦⟩})
1413rneqd 4706 . . . . . . . . . . . 12 (𝐴 = ⟨𝑥, 𝑦⟩ → ran {𝐴} = ran {⟨𝑥, 𝑦⟩})
1514unieqd 3694 . . . . . . . . . . 11 (𝐴 = ⟨𝑥, 𝑦⟩ → ran {𝐴} = ran {⟨𝑥, 𝑦⟩})
16 vex 2644 . . . . . . . . . . . 12 𝑥 ∈ V
17 vex 2644 . . . . . . . . . . . 12 𝑦 ∈ V
1816, 17op2nda 4959 . . . . . . . . . . 11 ran {⟨𝑥, 𝑦⟩} = 𝑦
1915, 18syl6req 2149 . . . . . . . . . 10 (𝐴 = ⟨𝑥, 𝑦⟩ → 𝑦 = ran {𝐴})
2019pm4.71ri 387 . . . . . . . . 9 (𝐴 = ⟨𝑥, 𝑦⟩ ↔ (𝑦 = ran {𝐴} ∧ 𝐴 = ⟨𝑥, 𝑦⟩))
2120anbi1i 449 . . . . . . . 8 ((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)) ↔ ((𝑦 = ran {𝐴} ∧ 𝐴 = ⟨𝑥, 𝑦⟩) ∧ (𝑥𝐵𝑦𝐶)))
22 anass 396 . . . . . . . 8 (((𝑦 = ran {𝐴} ∧ 𝐴 = ⟨𝑥, 𝑦⟩) ∧ (𝑥𝐵𝑦𝐶)) ↔ (𝑦 = ran {𝐴} ∧ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶))))
2321, 22bitri 183 . . . . . . 7 ((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)) ↔ (𝑦 = ran {𝐴} ∧ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶))))
2423exbii 1552 . . . . . 6 (∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)) ↔ ∃𝑦(𝑦 = ran {𝐴} ∧ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶))))
25 snexg 4048 . . . . . . . . 9 (𝐴 ∈ V → {𝐴} ∈ V)
26 rnexg 4740 . . . . . . . . 9 ({𝐴} ∈ V → ran {𝐴} ∈ V)
2725, 26syl 14 . . . . . . . 8 (𝐴 ∈ V → ran {𝐴} ∈ V)
28 uniexg 4299 . . . . . . . 8 (ran {𝐴} ∈ V → ran {𝐴} ∈ V)
2927, 28syl 14 . . . . . . 7 (𝐴 ∈ V → ran {𝐴} ∈ V)
30 opeq2 3653 . . . . . . . . . 10 (𝑦 = ran {𝐴} → ⟨𝑥, 𝑦⟩ = ⟨𝑥, ran {𝐴}⟩)
3130eqeq2d 2111 . . . . . . . . 9 (𝑦 = ran {𝐴} → (𝐴 = ⟨𝑥, 𝑦⟩ ↔ 𝐴 = ⟨𝑥, ran {𝐴}⟩))
32 eleq1 2162 . . . . . . . . . 10 (𝑦 = ran {𝐴} → (𝑦𝐶 ran {𝐴} ∈ 𝐶))
3332anbi2d 455 . . . . . . . . 9 (𝑦 = ran {𝐴} → ((𝑥𝐵𝑦𝐶) ↔ (𝑥𝐵 ran {𝐴} ∈ 𝐶)))
3431, 33anbi12d 460 . . . . . . . 8 (𝑦 = ran {𝐴} → ((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)) ↔ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶))))
3534ceqsexgv 2768 . . . . . . 7 ( ran {𝐴} ∈ V → (∃𝑦(𝑦 = ran {𝐴} ∧ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶))) ↔ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶))))
3629, 35syl 14 . . . . . 6 (𝐴 ∈ V → (∃𝑦(𝑦 = ran {𝐴} ∧ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶))) ↔ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶))))
3724, 36syl5bb 191 . . . . 5 (𝐴 ∈ V → (∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)) ↔ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶))))
38 sneq 3485 . . . . . . . . . . . 12 (𝐴 = ⟨𝑥, ran {𝐴}⟩ → {𝐴} = {⟨𝑥, ran {𝐴}⟩})
3938dmeqd 4679 . . . . . . . . . . 11 (𝐴 = ⟨𝑥, ran {𝐴}⟩ → dom {𝐴} = dom {⟨𝑥, ran {𝐴}⟩})
4039unieqd 3694 . . . . . . . . . 10 (𝐴 = ⟨𝑥, ran {𝐴}⟩ → dom {𝐴} = dom {⟨𝑥, ran {𝐴}⟩})
4140adantl 273 . . . . . . . . 9 ((𝐴 ∈ V ∧ 𝐴 = ⟨𝑥, ran {𝐴}⟩) → dom {𝐴} = dom {⟨𝑥, ran {𝐴}⟩})
42 dmsnopg 4946 . . . . . . . . . . . . 13 ( ran {𝐴} ∈ V → dom {⟨𝑥, ran {𝐴}⟩} = {𝑥})
4329, 42syl 14 . . . . . . . . . . . 12 (𝐴 ∈ V → dom {⟨𝑥, ran {𝐴}⟩} = {𝑥})
4443unieqd 3694 . . . . . . . . . . 11 (𝐴 ∈ V → dom {⟨𝑥, ran {𝐴}⟩} = {𝑥})
4516unisn 3699 . . . . . . . . . . 11 {𝑥} = 𝑥
4644, 45syl6eq 2148 . . . . . . . . . 10 (𝐴 ∈ V → dom {⟨𝑥, ran {𝐴}⟩} = 𝑥)
4746adantr 272 . . . . . . . . 9 ((𝐴 ∈ V ∧ 𝐴 = ⟨𝑥, ran {𝐴}⟩) → dom {⟨𝑥, ran {𝐴}⟩} = 𝑥)
4841, 47eqtr2d 2133 . . . . . . . 8 ((𝐴 ∈ V ∧ 𝐴 = ⟨𝑥, ran {𝐴}⟩) → 𝑥 = dom {𝐴})
4948ex 114 . . . . . . 7 (𝐴 ∈ V → (𝐴 = ⟨𝑥, ran {𝐴}⟩ → 𝑥 = dom {𝐴}))
5049pm4.71rd 389 . . . . . 6 (𝐴 ∈ V → (𝐴 = ⟨𝑥, ran {𝐴}⟩ ↔ (𝑥 = dom {𝐴} ∧ 𝐴 = ⟨𝑥, ran {𝐴}⟩)))
5150anbi1d 456 . . . . 5 (𝐴 ∈ V → ((𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶)) ↔ ((𝑥 = dom {𝐴} ∧ 𝐴 = ⟨𝑥, ran {𝐴}⟩) ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶))))
52 anass 396 . . . . . 6 (((𝑥 = dom {𝐴} ∧ 𝐴 = ⟨𝑥, ran {𝐴}⟩) ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶)) ↔ (𝑥 = dom {𝐴} ∧ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶))))
5352a1i 9 . . . . 5 (𝐴 ∈ V → (((𝑥 = dom {𝐴} ∧ 𝐴 = ⟨𝑥, ran {𝐴}⟩) ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶)) ↔ (𝑥 = dom {𝐴} ∧ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶)))))
5437, 51, 533bitrd 213 . . . 4 (𝐴 ∈ V → (∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)) ↔ (𝑥 = dom {𝐴} ∧ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶)))))
5554exbidv 1764 . . 3 (𝐴 ∈ V → (∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)) ↔ ∃𝑥(𝑥 = dom {𝐴} ∧ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶)))))
56 dmexg 4739 . . . . . 6 ({𝐴} ∈ V → dom {𝐴} ∈ V)
5725, 56syl 14 . . . . 5 (𝐴 ∈ V → dom {𝐴} ∈ V)
58 uniexg 4299 . . . . 5 (dom {𝐴} ∈ V → dom {𝐴} ∈ V)
5957, 58syl 14 . . . 4 (𝐴 ∈ V → dom {𝐴} ∈ V)
60 opeq1 3652 . . . . . . 7 (𝑥 = dom {𝐴} → ⟨𝑥, ran {𝐴}⟩ = ⟨ dom {𝐴}, ran {𝐴}⟩)
6160eqeq2d 2111 . . . . . 6 (𝑥 = dom {𝐴} → (𝐴 = ⟨𝑥, ran {𝐴}⟩ ↔ 𝐴 = ⟨ dom {𝐴}, ran {𝐴}⟩))
62 eleq1 2162 . . . . . . 7 (𝑥 = dom {𝐴} → (𝑥𝐵 dom {𝐴} ∈ 𝐵))
6362anbi1d 456 . . . . . 6 (𝑥 = dom {𝐴} → ((𝑥𝐵 ran {𝐴} ∈ 𝐶) ↔ ( dom {𝐴} ∈ 𝐵 ran {𝐴} ∈ 𝐶)))
6461, 63anbi12d 460 . . . . 5 (𝑥 = dom {𝐴} → ((𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶)) ↔ (𝐴 = ⟨ dom {𝐴}, ran {𝐴}⟩ ∧ ( dom {𝐴} ∈ 𝐵 ran {𝐴} ∈ 𝐶))))
6564ceqsexgv 2768 . . . 4 ( dom {𝐴} ∈ V → (∃𝑥(𝑥 = dom {𝐴} ∧ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶))) ↔ (𝐴 = ⟨ dom {𝐴}, ran {𝐴}⟩ ∧ ( dom {𝐴} ∈ 𝐵 ran {𝐴} ∈ 𝐶))))
6659, 65syl 14 . . 3 (𝐴 ∈ V → (∃𝑥(𝑥 = dom {𝐴} ∧ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶))) ↔ (𝐴 = ⟨ dom {𝐴}, ran {𝐴}⟩ ∧ ( dom {𝐴} ∈ 𝐵 ran {𝐴} ∈ 𝐶))))
6712, 55, 663bitrd 213 . 2 (𝐴 ∈ V → (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = ⟨ dom {𝐴}, ran {𝐴}⟩ ∧ ( dom {𝐴} ∈ 𝐵 ran {𝐴} ∈ 𝐶))))
681, 10, 67pm5.21nii 661 1 (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = ⟨ dom {𝐴}, ran {𝐴}⟩ ∧ ( dom {𝐴} ∈ 𝐵 ran {𝐴} ∈ 𝐶)))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104   = wceq 1299  wex 1436  wcel 1448  Vcvv 2641  {csn 3474  cop 3477   cuni 3683   × cxp 4475  dom cdm 4477  ran crn 4478
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-un 4293
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ral 2380  df-rex 2381  df-v 2643  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-br 3876  df-opab 3930  df-xp 4483  df-rel 4484  df-cnv 4485  df-dm 4487  df-rn 4488
This theorem is referenced by:  elxp6  5998  xpdom2  6654
  Copyright terms: Public domain W3C validator