ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmfco GIF version

Theorem dmfco 5554
Description: Domains of a function composition. (Contributed by NM, 27-Jan-1997.)
Assertion
Ref Expression
dmfco ((Fun 𝐺𝐴 ∈ dom 𝐺) → (𝐴 ∈ dom (𝐹𝐺) ↔ (𝐺𝐴) ∈ dom 𝐹))

Proof of Theorem dmfco
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funfvex 5503 . . . . 5 ((Fun 𝐺𝐴 ∈ dom 𝐺) → (𝐺𝐴) ∈ V)
2 opeq1 3758 . . . . . . 7 (𝑥 = (𝐺𝐴) → ⟨𝑥, 𝑦⟩ = ⟨(𝐺𝐴), 𝑦⟩)
32eleq1d 2235 . . . . . 6 (𝑥 = (𝐺𝐴) → (⟨𝑥, 𝑦⟩ ∈ 𝐹 ↔ ⟨(𝐺𝐴), 𝑦⟩ ∈ 𝐹))
43ceqsexgv 2855 . . . . 5 ((𝐺𝐴) ∈ V → (∃𝑥(𝑥 = (𝐺𝐴) ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) ↔ ⟨(𝐺𝐴), 𝑦⟩ ∈ 𝐹))
51, 4syl 14 . . . 4 ((Fun 𝐺𝐴 ∈ dom 𝐺) → (∃𝑥(𝑥 = (𝐺𝐴) ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) ↔ ⟨(𝐺𝐴), 𝑦⟩ ∈ 𝐹))
6 eqcom 2167 . . . . . . 7 (𝑥 = (𝐺𝐴) ↔ (𝐺𝐴) = 𝑥)
7 funopfvb 5530 . . . . . . 7 ((Fun 𝐺𝐴 ∈ dom 𝐺) → ((𝐺𝐴) = 𝑥 ↔ ⟨𝐴, 𝑥⟩ ∈ 𝐺))
86, 7syl5bb 191 . . . . . 6 ((Fun 𝐺𝐴 ∈ dom 𝐺) → (𝑥 = (𝐺𝐴) ↔ ⟨𝐴, 𝑥⟩ ∈ 𝐺))
98anbi1d 461 . . . . 5 ((Fun 𝐺𝐴 ∈ dom 𝐺) → ((𝑥 = (𝐺𝐴) ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) ↔ (⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
109exbidv 1813 . . . 4 ((Fun 𝐺𝐴 ∈ dom 𝐺) → (∃𝑥(𝑥 = (𝐺𝐴) ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) ↔ ∃𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
115, 10bitr3d 189 . . 3 ((Fun 𝐺𝐴 ∈ dom 𝐺) → (⟨(𝐺𝐴), 𝑦⟩ ∈ 𝐹 ↔ ∃𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
1211exbidv 1813 . 2 ((Fun 𝐺𝐴 ∈ dom 𝐺) → (∃𝑦⟨(𝐺𝐴), 𝑦⟩ ∈ 𝐹 ↔ ∃𝑦𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
13 eldm2g 4800 . . 3 ((𝐺𝐴) ∈ V → ((𝐺𝐴) ∈ dom 𝐹 ↔ ∃𝑦⟨(𝐺𝐴), 𝑦⟩ ∈ 𝐹))
141, 13syl 14 . 2 ((Fun 𝐺𝐴 ∈ dom 𝐺) → ((𝐺𝐴) ∈ dom 𝐹 ↔ ∃𝑦⟨(𝐺𝐴), 𝑦⟩ ∈ 𝐹))
15 eldm2g 4800 . . . 4 (𝐴 ∈ dom 𝐺 → (𝐴 ∈ dom (𝐹𝐺) ↔ ∃𝑦𝐴, 𝑦⟩ ∈ (𝐹𝐺)))
16 vex 2729 . . . . . 6 𝑦 ∈ V
17 opelco2g 4772 . . . . . 6 ((𝐴 ∈ dom 𝐺𝑦 ∈ V) → (⟨𝐴, 𝑦⟩ ∈ (𝐹𝐺) ↔ ∃𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
1816, 17mpan2 422 . . . . 5 (𝐴 ∈ dom 𝐺 → (⟨𝐴, 𝑦⟩ ∈ (𝐹𝐺) ↔ ∃𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
1918exbidv 1813 . . . 4 (𝐴 ∈ dom 𝐺 → (∃𝑦𝐴, 𝑦⟩ ∈ (𝐹𝐺) ↔ ∃𝑦𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
2015, 19bitrd 187 . . 3 (𝐴 ∈ dom 𝐺 → (𝐴 ∈ dom (𝐹𝐺) ↔ ∃𝑦𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
2120adantl 275 . 2 ((Fun 𝐺𝐴 ∈ dom 𝐺) → (𝐴 ∈ dom (𝐹𝐺) ↔ ∃𝑦𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
2212, 14, 213bitr4rd 220 1 ((Fun 𝐺𝐴 ∈ dom 𝐺) → (𝐴 ∈ dom (𝐹𝐺) ↔ (𝐺𝐴) ∈ dom 𝐹))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wex 1480  wcel 2136  Vcvv 2726  cop 3579  dom cdm 4604  ccom 4608  Fun wfun 5182  cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fn 5191  df-fv 5196
This theorem is referenced by:  ctssdccl  7076
  Copyright terms: Public domain W3C validator