ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmfco GIF version

Theorem dmfco 5660
Description: Domains of a function composition. (Contributed by NM, 27-Jan-1997.)
Assertion
Ref Expression
dmfco ((Fun 𝐺𝐴 ∈ dom 𝐺) → (𝐴 ∈ dom (𝐹𝐺) ↔ (𝐺𝐴) ∈ dom 𝐹))

Proof of Theorem dmfco
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funfvex 5606 . . . . 5 ((Fun 𝐺𝐴 ∈ dom 𝐺) → (𝐺𝐴) ∈ V)
2 opeq1 3825 . . . . . . 7 (𝑥 = (𝐺𝐴) → ⟨𝑥, 𝑦⟩ = ⟨(𝐺𝐴), 𝑦⟩)
32eleq1d 2275 . . . . . 6 (𝑥 = (𝐺𝐴) → (⟨𝑥, 𝑦⟩ ∈ 𝐹 ↔ ⟨(𝐺𝐴), 𝑦⟩ ∈ 𝐹))
43ceqsexgv 2906 . . . . 5 ((𝐺𝐴) ∈ V → (∃𝑥(𝑥 = (𝐺𝐴) ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) ↔ ⟨(𝐺𝐴), 𝑦⟩ ∈ 𝐹))
51, 4syl 14 . . . 4 ((Fun 𝐺𝐴 ∈ dom 𝐺) → (∃𝑥(𝑥 = (𝐺𝐴) ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) ↔ ⟨(𝐺𝐴), 𝑦⟩ ∈ 𝐹))
6 eqcom 2208 . . . . . . 7 (𝑥 = (𝐺𝐴) ↔ (𝐺𝐴) = 𝑥)
7 funopfvb 5635 . . . . . . 7 ((Fun 𝐺𝐴 ∈ dom 𝐺) → ((𝐺𝐴) = 𝑥 ↔ ⟨𝐴, 𝑥⟩ ∈ 𝐺))
86, 7bitrid 192 . . . . . 6 ((Fun 𝐺𝐴 ∈ dom 𝐺) → (𝑥 = (𝐺𝐴) ↔ ⟨𝐴, 𝑥⟩ ∈ 𝐺))
98anbi1d 465 . . . . 5 ((Fun 𝐺𝐴 ∈ dom 𝐺) → ((𝑥 = (𝐺𝐴) ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) ↔ (⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
109exbidv 1849 . . . 4 ((Fun 𝐺𝐴 ∈ dom 𝐺) → (∃𝑥(𝑥 = (𝐺𝐴) ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) ↔ ∃𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
115, 10bitr3d 190 . . 3 ((Fun 𝐺𝐴 ∈ dom 𝐺) → (⟨(𝐺𝐴), 𝑦⟩ ∈ 𝐹 ↔ ∃𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
1211exbidv 1849 . 2 ((Fun 𝐺𝐴 ∈ dom 𝐺) → (∃𝑦⟨(𝐺𝐴), 𝑦⟩ ∈ 𝐹 ↔ ∃𝑦𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
13 eldm2g 4883 . . 3 ((𝐺𝐴) ∈ V → ((𝐺𝐴) ∈ dom 𝐹 ↔ ∃𝑦⟨(𝐺𝐴), 𝑦⟩ ∈ 𝐹))
141, 13syl 14 . 2 ((Fun 𝐺𝐴 ∈ dom 𝐺) → ((𝐺𝐴) ∈ dom 𝐹 ↔ ∃𝑦⟨(𝐺𝐴), 𝑦⟩ ∈ 𝐹))
15 eldm2g 4883 . . . 4 (𝐴 ∈ dom 𝐺 → (𝐴 ∈ dom (𝐹𝐺) ↔ ∃𝑦𝐴, 𝑦⟩ ∈ (𝐹𝐺)))
16 vex 2776 . . . . . 6 𝑦 ∈ V
17 opelco2g 4854 . . . . . 6 ((𝐴 ∈ dom 𝐺𝑦 ∈ V) → (⟨𝐴, 𝑦⟩ ∈ (𝐹𝐺) ↔ ∃𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
1816, 17mpan2 425 . . . . 5 (𝐴 ∈ dom 𝐺 → (⟨𝐴, 𝑦⟩ ∈ (𝐹𝐺) ↔ ∃𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
1918exbidv 1849 . . . 4 (𝐴 ∈ dom 𝐺 → (∃𝑦𝐴, 𝑦⟩ ∈ (𝐹𝐺) ↔ ∃𝑦𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
2015, 19bitrd 188 . . 3 (𝐴 ∈ dom 𝐺 → (𝐴 ∈ dom (𝐹𝐺) ↔ ∃𝑦𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
2120adantl 277 . 2 ((Fun 𝐺𝐴 ∈ dom 𝐺) → (𝐴 ∈ dom (𝐹𝐺) ↔ ∃𝑦𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
2212, 14, 213bitr4rd 221 1 ((Fun 𝐺𝐴 ∈ dom 𝐺) → (𝐴 ∈ dom (𝐹𝐺) ↔ (𝐺𝐴) ∈ dom 𝐹))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wex 1516  wcel 2177  Vcvv 2773  cop 3641  dom cdm 4683  ccom 4687  Fun wfun 5274  cfv 5280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3003  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-iota 5241  df-fun 5282  df-fn 5283  df-fv 5288
This theorem is referenced by:  ctssdccl  7228
  Copyright terms: Public domain W3C validator