ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relcnvtr GIF version

Theorem relcnvtr 5014
Description: A relation is transitive iff its converse is transitive. (Contributed by FL, 19-Sep-2011.)
Assertion
Ref Expression
relcnvtr (Rel 𝑅 → ((𝑅𝑅) ⊆ 𝑅 ↔ (𝑅𝑅) ⊆ 𝑅))

Proof of Theorem relcnvtr
StepHypRef Expression
1 cnvco 4682 . . 3 (𝑅𝑅) = (𝑅𝑅)
2 cnvss 4670 . . 3 ((𝑅𝑅) ⊆ 𝑅(𝑅𝑅) ⊆ 𝑅)
31, 2syl5eqssr 3108 . 2 ((𝑅𝑅) ⊆ 𝑅 → (𝑅𝑅) ⊆ 𝑅)
4 cnvco 4682 . . . 4 (𝑅𝑅) = (𝑅𝑅)
5 cnvss 4670 . . . 4 ((𝑅𝑅) ⊆ 𝑅(𝑅𝑅) ⊆ 𝑅)
6 sseq1 3084 . . . . 5 ((𝑅𝑅) = (𝑅𝑅) → ((𝑅𝑅) ⊆ 𝑅 ↔ (𝑅𝑅) ⊆ 𝑅))
7 dfrel2 4945 . . . . . . 7 (Rel 𝑅𝑅 = 𝑅)
8 coeq1 4654 . . . . . . . . . 10 (𝑅 = 𝑅 → (𝑅𝑅) = (𝑅𝑅))
9 coeq2 4655 . . . . . . . . . 10 (𝑅 = 𝑅 → (𝑅𝑅) = (𝑅𝑅))
108, 9eqtrd 2145 . . . . . . . . 9 (𝑅 = 𝑅 → (𝑅𝑅) = (𝑅𝑅))
11 id 19 . . . . . . . . 9 (𝑅 = 𝑅𝑅 = 𝑅)
1210, 11sseq12d 3092 . . . . . . . 8 (𝑅 = 𝑅 → ((𝑅𝑅) ⊆ 𝑅 ↔ (𝑅𝑅) ⊆ 𝑅))
1312biimpd 143 . . . . . . 7 (𝑅 = 𝑅 → ((𝑅𝑅) ⊆ 𝑅 → (𝑅𝑅) ⊆ 𝑅))
147, 13sylbi 120 . . . . . 6 (Rel 𝑅 → ((𝑅𝑅) ⊆ 𝑅 → (𝑅𝑅) ⊆ 𝑅))
1514com12 30 . . . . 5 ((𝑅𝑅) ⊆ 𝑅 → (Rel 𝑅 → (𝑅𝑅) ⊆ 𝑅))
166, 15syl6bi 162 . . . 4 ((𝑅𝑅) = (𝑅𝑅) → ((𝑅𝑅) ⊆ 𝑅 → (Rel 𝑅 → (𝑅𝑅) ⊆ 𝑅)))
174, 5, 16mpsyl 65 . . 3 ((𝑅𝑅) ⊆ 𝑅 → (Rel 𝑅 → (𝑅𝑅) ⊆ 𝑅))
1817com12 30 . 2 (Rel 𝑅 → ((𝑅𝑅) ⊆ 𝑅 → (𝑅𝑅) ⊆ 𝑅))
193, 18impbid2 142 1 (Rel 𝑅 → ((𝑅𝑅) ⊆ 𝑅 ↔ (𝑅𝑅) ⊆ 𝑅))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1312  wss 3035  ccnv 4496  ccom 4501  Rel wrel 4502
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-pow 4056  ax-pr 4089
This theorem depends on definitions:  df-bi 116  df-3an 945  df-tru 1315  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ral 2393  df-rex 2394  df-v 2657  df-un 3039  df-in 3041  df-ss 3048  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-br 3894  df-opab 3948  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator