Proof of Theorem relcnvtr
| Step | Hyp | Ref
 | Expression | 
| 1 |   | cnvco 4851 | 
. . 3
⊢ ◡(𝑅 ∘ 𝑅) = (◡𝑅 ∘ ◡𝑅) | 
| 2 |   | cnvss 4839 | 
. . 3
⊢ ((𝑅 ∘ 𝑅) ⊆ 𝑅 → ◡(𝑅 ∘ 𝑅) ⊆ ◡𝑅) | 
| 3 | 1, 2 | eqsstrrid 3230 | 
. 2
⊢ ((𝑅 ∘ 𝑅) ⊆ 𝑅 → (◡𝑅 ∘ ◡𝑅) ⊆ ◡𝑅) | 
| 4 |   | cnvco 4851 | 
. . . 4
⊢ ◡(◡𝑅 ∘ ◡𝑅) = (◡◡𝑅 ∘ ◡◡𝑅) | 
| 5 |   | cnvss 4839 | 
. . . 4
⊢ ((◡𝑅 ∘ ◡𝑅) ⊆ ◡𝑅 → ◡(◡𝑅 ∘ ◡𝑅) ⊆ ◡◡𝑅) | 
| 6 |   | sseq1 3206 | 
. . . . 5
⊢ (◡(◡𝑅 ∘ ◡𝑅) = (◡◡𝑅 ∘ ◡◡𝑅) → (◡(◡𝑅 ∘ ◡𝑅) ⊆ ◡◡𝑅 ↔ (◡◡𝑅 ∘ ◡◡𝑅) ⊆ ◡◡𝑅)) | 
| 7 |   | dfrel2 5120 | 
. . . . . . 7
⊢ (Rel
𝑅 ↔ ◡◡𝑅 = 𝑅) | 
| 8 |   | coeq1 4823 | 
. . . . . . . . . 10
⊢ (◡◡𝑅 = 𝑅 → (◡◡𝑅 ∘ ◡◡𝑅) = (𝑅 ∘ ◡◡𝑅)) | 
| 9 |   | coeq2 4824 | 
. . . . . . . . . 10
⊢ (◡◡𝑅 = 𝑅 → (𝑅 ∘ ◡◡𝑅) = (𝑅 ∘ 𝑅)) | 
| 10 | 8, 9 | eqtrd 2229 | 
. . . . . . . . 9
⊢ (◡◡𝑅 = 𝑅 → (◡◡𝑅 ∘ ◡◡𝑅) = (𝑅 ∘ 𝑅)) | 
| 11 |   | id 19 | 
. . . . . . . . 9
⊢ (◡◡𝑅 = 𝑅 → ◡◡𝑅 = 𝑅) | 
| 12 | 10, 11 | sseq12d 3214 | 
. . . . . . . 8
⊢ (◡◡𝑅 = 𝑅 → ((◡◡𝑅 ∘ ◡◡𝑅) ⊆ ◡◡𝑅 ↔ (𝑅 ∘ 𝑅) ⊆ 𝑅)) | 
| 13 | 12 | biimpd 144 | 
. . . . . . 7
⊢ (◡◡𝑅 = 𝑅 → ((◡◡𝑅 ∘ ◡◡𝑅) ⊆ ◡◡𝑅 → (𝑅 ∘ 𝑅) ⊆ 𝑅)) | 
| 14 | 7, 13 | sylbi 121 | 
. . . . . 6
⊢ (Rel
𝑅 → ((◡◡𝑅 ∘ ◡◡𝑅) ⊆ ◡◡𝑅 → (𝑅 ∘ 𝑅) ⊆ 𝑅)) | 
| 15 | 14 | com12 30 | 
. . . . 5
⊢ ((◡◡𝑅 ∘ ◡◡𝑅) ⊆ ◡◡𝑅 → (Rel 𝑅 → (𝑅 ∘ 𝑅) ⊆ 𝑅)) | 
| 16 | 6, 15 | biimtrdi 163 | 
. . . 4
⊢ (◡(◡𝑅 ∘ ◡𝑅) = (◡◡𝑅 ∘ ◡◡𝑅) → (◡(◡𝑅 ∘ ◡𝑅) ⊆ ◡◡𝑅 → (Rel 𝑅 → (𝑅 ∘ 𝑅) ⊆ 𝑅))) | 
| 17 | 4, 5, 16 | mpsyl 65 | 
. . 3
⊢ ((◡𝑅 ∘ ◡𝑅) ⊆ ◡𝑅 → (Rel 𝑅 → (𝑅 ∘ 𝑅) ⊆ 𝑅)) | 
| 18 | 17 | com12 30 | 
. 2
⊢ (Rel
𝑅 → ((◡𝑅 ∘ ◡𝑅) ⊆ ◡𝑅 → (𝑅 ∘ 𝑅) ⊆ 𝑅)) | 
| 19 | 3, 18 | impbid2 143 | 
1
⊢ (Rel
𝑅 → ((𝑅 ∘ 𝑅) ⊆ 𝑅 ↔ (◡𝑅 ∘ ◡𝑅) ⊆ ◡𝑅)) |