ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relcnvtr GIF version

Theorem relcnvtr 5221
Description: A relation is transitive iff its converse is transitive. (Contributed by FL, 19-Sep-2011.)
Assertion
Ref Expression
relcnvtr (Rel 𝑅 → ((𝑅𝑅) ⊆ 𝑅 ↔ (𝑅𝑅) ⊆ 𝑅))

Proof of Theorem relcnvtr
StepHypRef Expression
1 cnvco 4881 . . 3 (𝑅𝑅) = (𝑅𝑅)
2 cnvss 4869 . . 3 ((𝑅𝑅) ⊆ 𝑅(𝑅𝑅) ⊆ 𝑅)
31, 2eqsstrrid 3248 . 2 ((𝑅𝑅) ⊆ 𝑅 → (𝑅𝑅) ⊆ 𝑅)
4 cnvco 4881 . . . 4 (𝑅𝑅) = (𝑅𝑅)
5 cnvss 4869 . . . 4 ((𝑅𝑅) ⊆ 𝑅(𝑅𝑅) ⊆ 𝑅)
6 sseq1 3224 . . . . 5 ((𝑅𝑅) = (𝑅𝑅) → ((𝑅𝑅) ⊆ 𝑅 ↔ (𝑅𝑅) ⊆ 𝑅))
7 dfrel2 5152 . . . . . . 7 (Rel 𝑅𝑅 = 𝑅)
8 coeq1 4853 . . . . . . . . . 10 (𝑅 = 𝑅 → (𝑅𝑅) = (𝑅𝑅))
9 coeq2 4854 . . . . . . . . . 10 (𝑅 = 𝑅 → (𝑅𝑅) = (𝑅𝑅))
108, 9eqtrd 2240 . . . . . . . . 9 (𝑅 = 𝑅 → (𝑅𝑅) = (𝑅𝑅))
11 id 19 . . . . . . . . 9 (𝑅 = 𝑅𝑅 = 𝑅)
1210, 11sseq12d 3232 . . . . . . . 8 (𝑅 = 𝑅 → ((𝑅𝑅) ⊆ 𝑅 ↔ (𝑅𝑅) ⊆ 𝑅))
1312biimpd 144 . . . . . . 7 (𝑅 = 𝑅 → ((𝑅𝑅) ⊆ 𝑅 → (𝑅𝑅) ⊆ 𝑅))
147, 13sylbi 121 . . . . . 6 (Rel 𝑅 → ((𝑅𝑅) ⊆ 𝑅 → (𝑅𝑅) ⊆ 𝑅))
1514com12 30 . . . . 5 ((𝑅𝑅) ⊆ 𝑅 → (Rel 𝑅 → (𝑅𝑅) ⊆ 𝑅))
166, 15biimtrdi 163 . . . 4 ((𝑅𝑅) = (𝑅𝑅) → ((𝑅𝑅) ⊆ 𝑅 → (Rel 𝑅 → (𝑅𝑅) ⊆ 𝑅)))
174, 5, 16mpsyl 65 . . 3 ((𝑅𝑅) ⊆ 𝑅 → (Rel 𝑅 → (𝑅𝑅) ⊆ 𝑅))
1817com12 30 . 2 (Rel 𝑅 → ((𝑅𝑅) ⊆ 𝑅 → (𝑅𝑅) ⊆ 𝑅))
193, 18impbid2 143 1 (Rel 𝑅 → ((𝑅𝑅) ⊆ 𝑅 ↔ (𝑅𝑅) ⊆ 𝑅))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1373  wss 3174  ccnv 4692  ccom 4697  Rel wrel 4698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator