ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relcnvtr GIF version

Theorem relcnvtr 5248
Description: A relation is transitive iff its converse is transitive. (Contributed by FL, 19-Sep-2011.)
Assertion
Ref Expression
relcnvtr (Rel 𝑅 → ((𝑅𝑅) ⊆ 𝑅 ↔ (𝑅𝑅) ⊆ 𝑅))

Proof of Theorem relcnvtr
StepHypRef Expression
1 cnvco 4907 . . 3 (𝑅𝑅) = (𝑅𝑅)
2 cnvss 4895 . . 3 ((𝑅𝑅) ⊆ 𝑅(𝑅𝑅) ⊆ 𝑅)
31, 2eqsstrrid 3271 . 2 ((𝑅𝑅) ⊆ 𝑅 → (𝑅𝑅) ⊆ 𝑅)
4 cnvco 4907 . . . 4 (𝑅𝑅) = (𝑅𝑅)
5 cnvss 4895 . . . 4 ((𝑅𝑅) ⊆ 𝑅(𝑅𝑅) ⊆ 𝑅)
6 sseq1 3247 . . . . 5 ((𝑅𝑅) = (𝑅𝑅) → ((𝑅𝑅) ⊆ 𝑅 ↔ (𝑅𝑅) ⊆ 𝑅))
7 dfrel2 5179 . . . . . . 7 (Rel 𝑅𝑅 = 𝑅)
8 coeq1 4879 . . . . . . . . . 10 (𝑅 = 𝑅 → (𝑅𝑅) = (𝑅𝑅))
9 coeq2 4880 . . . . . . . . . 10 (𝑅 = 𝑅 → (𝑅𝑅) = (𝑅𝑅))
108, 9eqtrd 2262 . . . . . . . . 9 (𝑅 = 𝑅 → (𝑅𝑅) = (𝑅𝑅))
11 id 19 . . . . . . . . 9 (𝑅 = 𝑅𝑅 = 𝑅)
1210, 11sseq12d 3255 . . . . . . . 8 (𝑅 = 𝑅 → ((𝑅𝑅) ⊆ 𝑅 ↔ (𝑅𝑅) ⊆ 𝑅))
1312biimpd 144 . . . . . . 7 (𝑅 = 𝑅 → ((𝑅𝑅) ⊆ 𝑅 → (𝑅𝑅) ⊆ 𝑅))
147, 13sylbi 121 . . . . . 6 (Rel 𝑅 → ((𝑅𝑅) ⊆ 𝑅 → (𝑅𝑅) ⊆ 𝑅))
1514com12 30 . . . . 5 ((𝑅𝑅) ⊆ 𝑅 → (Rel 𝑅 → (𝑅𝑅) ⊆ 𝑅))
166, 15biimtrdi 163 . . . 4 ((𝑅𝑅) = (𝑅𝑅) → ((𝑅𝑅) ⊆ 𝑅 → (Rel 𝑅 → (𝑅𝑅) ⊆ 𝑅)))
174, 5, 16mpsyl 65 . . 3 ((𝑅𝑅) ⊆ 𝑅 → (Rel 𝑅 → (𝑅𝑅) ⊆ 𝑅))
1817com12 30 . 2 (Rel 𝑅 → ((𝑅𝑅) ⊆ 𝑅 → (𝑅𝑅) ⊆ 𝑅))
193, 18impbid2 143 1 (Rel 𝑅 → ((𝑅𝑅) ⊆ 𝑅 ↔ (𝑅𝑅) ⊆ 𝑅))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1395  wss 3197  ccnv 4718  ccom 4723  Rel wrel 4724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator