ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relcnvtr GIF version

Theorem relcnvtr 5185
Description: A relation is transitive iff its converse is transitive. (Contributed by FL, 19-Sep-2011.)
Assertion
Ref Expression
relcnvtr (Rel 𝑅 → ((𝑅𝑅) ⊆ 𝑅 ↔ (𝑅𝑅) ⊆ 𝑅))

Proof of Theorem relcnvtr
StepHypRef Expression
1 cnvco 4847 . . 3 (𝑅𝑅) = (𝑅𝑅)
2 cnvss 4835 . . 3 ((𝑅𝑅) ⊆ 𝑅(𝑅𝑅) ⊆ 𝑅)
31, 2eqsstrrid 3226 . 2 ((𝑅𝑅) ⊆ 𝑅 → (𝑅𝑅) ⊆ 𝑅)
4 cnvco 4847 . . . 4 (𝑅𝑅) = (𝑅𝑅)
5 cnvss 4835 . . . 4 ((𝑅𝑅) ⊆ 𝑅(𝑅𝑅) ⊆ 𝑅)
6 sseq1 3202 . . . . 5 ((𝑅𝑅) = (𝑅𝑅) → ((𝑅𝑅) ⊆ 𝑅 ↔ (𝑅𝑅) ⊆ 𝑅))
7 dfrel2 5116 . . . . . . 7 (Rel 𝑅𝑅 = 𝑅)
8 coeq1 4819 . . . . . . . . . 10 (𝑅 = 𝑅 → (𝑅𝑅) = (𝑅𝑅))
9 coeq2 4820 . . . . . . . . . 10 (𝑅 = 𝑅 → (𝑅𝑅) = (𝑅𝑅))
108, 9eqtrd 2226 . . . . . . . . 9 (𝑅 = 𝑅 → (𝑅𝑅) = (𝑅𝑅))
11 id 19 . . . . . . . . 9 (𝑅 = 𝑅𝑅 = 𝑅)
1210, 11sseq12d 3210 . . . . . . . 8 (𝑅 = 𝑅 → ((𝑅𝑅) ⊆ 𝑅 ↔ (𝑅𝑅) ⊆ 𝑅))
1312biimpd 144 . . . . . . 7 (𝑅 = 𝑅 → ((𝑅𝑅) ⊆ 𝑅 → (𝑅𝑅) ⊆ 𝑅))
147, 13sylbi 121 . . . . . 6 (Rel 𝑅 → ((𝑅𝑅) ⊆ 𝑅 → (𝑅𝑅) ⊆ 𝑅))
1514com12 30 . . . . 5 ((𝑅𝑅) ⊆ 𝑅 → (Rel 𝑅 → (𝑅𝑅) ⊆ 𝑅))
166, 15biimtrdi 163 . . . 4 ((𝑅𝑅) = (𝑅𝑅) → ((𝑅𝑅) ⊆ 𝑅 → (Rel 𝑅 → (𝑅𝑅) ⊆ 𝑅)))
174, 5, 16mpsyl 65 . . 3 ((𝑅𝑅) ⊆ 𝑅 → (Rel 𝑅 → (𝑅𝑅) ⊆ 𝑅))
1817com12 30 . 2 (Rel 𝑅 → ((𝑅𝑅) ⊆ 𝑅 → (𝑅𝑅) ⊆ 𝑅))
193, 18impbid2 143 1 (Rel 𝑅 → ((𝑅𝑅) ⊆ 𝑅 ↔ (𝑅𝑅) ⊆ 𝑅))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wss 3153  ccnv 4658  ccom 4663  Rel wrel 4664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator