ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  crngcom GIF version

Theorem crngcom 13972
Description: A commutative ring's multiplication operation is commutative. (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypotheses
Ref Expression
ringcl.b 𝐵 = (Base‘𝑅)
ringcl.t · = (.r𝑅)
Assertion
Ref Expression
crngcom ((𝑅 ∈ CRing ∧ 𝑋𝐵𝑌𝐵) → (𝑋 · 𝑌) = (𝑌 · 𝑋))

Proof of Theorem crngcom
StepHypRef Expression
1 eqid 2229 . . . . 5 (mulGrp‘𝑅) = (mulGrp‘𝑅)
21crngmgp 13962 . . . 4 (𝑅 ∈ CRing → (mulGrp‘𝑅) ∈ CMnd)
323ad2ant1 1042 . . 3 ((𝑅 ∈ CRing ∧ 𝑋𝐵𝑌𝐵) → (mulGrp‘𝑅) ∈ CMnd)
4 simp2 1022 . . . 4 ((𝑅 ∈ CRing ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
5 ringcl.b . . . . . 6 𝐵 = (Base‘𝑅)
61, 5mgpbasg 13884 . . . . 5 (𝑅 ∈ CRing → 𝐵 = (Base‘(mulGrp‘𝑅)))
763ad2ant1 1042 . . . 4 ((𝑅 ∈ CRing ∧ 𝑋𝐵𝑌𝐵) → 𝐵 = (Base‘(mulGrp‘𝑅)))
84, 7eleqtrd 2308 . . 3 ((𝑅 ∈ CRing ∧ 𝑋𝐵𝑌𝐵) → 𝑋 ∈ (Base‘(mulGrp‘𝑅)))
9 simp3 1023 . . . 4 ((𝑅 ∈ CRing ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
109, 7eleqtrd 2308 . . 3 ((𝑅 ∈ CRing ∧ 𝑋𝐵𝑌𝐵) → 𝑌 ∈ (Base‘(mulGrp‘𝑅)))
11 eqid 2229 . . . 4 (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅))
12 eqid 2229 . . . 4 (+g‘(mulGrp‘𝑅)) = (+g‘(mulGrp‘𝑅))
1311, 12cmncom 13834 . . 3 (((mulGrp‘𝑅) ∈ CMnd ∧ 𝑋 ∈ (Base‘(mulGrp‘𝑅)) ∧ 𝑌 ∈ (Base‘(mulGrp‘𝑅))) → (𝑋(+g‘(mulGrp‘𝑅))𝑌) = (𝑌(+g‘(mulGrp‘𝑅))𝑋))
143, 8, 10, 13syl3anc 1271 . 2 ((𝑅 ∈ CRing ∧ 𝑋𝐵𝑌𝐵) → (𝑋(+g‘(mulGrp‘𝑅))𝑌) = (𝑌(+g‘(mulGrp‘𝑅))𝑋))
15 ringcl.t . . . . 5 · = (.r𝑅)
161, 15mgpplusgg 13882 . . . 4 (𝑅 ∈ CRing → · = (+g‘(mulGrp‘𝑅)))
17163ad2ant1 1042 . . 3 ((𝑅 ∈ CRing ∧ 𝑋𝐵𝑌𝐵) → · = (+g‘(mulGrp‘𝑅)))
1817oveqd 6017 . 2 ((𝑅 ∈ CRing ∧ 𝑋𝐵𝑌𝐵) → (𝑋 · 𝑌) = (𝑋(+g‘(mulGrp‘𝑅))𝑌))
1917oveqd 6017 . 2 ((𝑅 ∈ CRing ∧ 𝑋𝐵𝑌𝐵) → (𝑌 · 𝑋) = (𝑌(+g‘(mulGrp‘𝑅))𝑋))
2014, 18, 193eqtr4d 2272 1 ((𝑅 ∈ CRing ∧ 𝑋𝐵𝑌𝐵) → (𝑋 · 𝑌) = (𝑌 · 𝑋))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 1002   = wceq 1395  wcel 2200  cfv 5317  (class class class)co 6000  Basecbs 13027  +gcplusg 13105  .rcmulr 13106  CMndccmn 13816  mulGrpcmgp 13878  CRingccrg 13955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-iota 5277  df-fun 5319  df-fn 5320  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-inn 9107  df-2 9165  df-3 9166  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-plusg 13118  df-mulr 13119  df-cmn 13818  df-mgp 13879  df-cring 13957
This theorem is referenced by:  crngoppr  14030  unitmulclb  14072  rdivmuldivd  14102  rmodislmodlem  14308  quscrng  14491
  Copyright terms: Public domain W3C validator