ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  crngcom GIF version

Theorem crngcom 13513
Description: A commutative ring's multiplication operation is commutative. (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypotheses
Ref Expression
ringcl.b 𝐵 = (Base‘𝑅)
ringcl.t · = (.r𝑅)
Assertion
Ref Expression
crngcom ((𝑅 ∈ CRing ∧ 𝑋𝐵𝑌𝐵) → (𝑋 · 𝑌) = (𝑌 · 𝑋))

Proof of Theorem crngcom
StepHypRef Expression
1 eqid 2193 . . . . 5 (mulGrp‘𝑅) = (mulGrp‘𝑅)
21crngmgp 13503 . . . 4 (𝑅 ∈ CRing → (mulGrp‘𝑅) ∈ CMnd)
323ad2ant1 1020 . . 3 ((𝑅 ∈ CRing ∧ 𝑋𝐵𝑌𝐵) → (mulGrp‘𝑅) ∈ CMnd)
4 simp2 1000 . . . 4 ((𝑅 ∈ CRing ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
5 ringcl.b . . . . . 6 𝐵 = (Base‘𝑅)
61, 5mgpbasg 13425 . . . . 5 (𝑅 ∈ CRing → 𝐵 = (Base‘(mulGrp‘𝑅)))
763ad2ant1 1020 . . . 4 ((𝑅 ∈ CRing ∧ 𝑋𝐵𝑌𝐵) → 𝐵 = (Base‘(mulGrp‘𝑅)))
84, 7eleqtrd 2272 . . 3 ((𝑅 ∈ CRing ∧ 𝑋𝐵𝑌𝐵) → 𝑋 ∈ (Base‘(mulGrp‘𝑅)))
9 simp3 1001 . . . 4 ((𝑅 ∈ CRing ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
109, 7eleqtrd 2272 . . 3 ((𝑅 ∈ CRing ∧ 𝑋𝐵𝑌𝐵) → 𝑌 ∈ (Base‘(mulGrp‘𝑅)))
11 eqid 2193 . . . 4 (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅))
12 eqid 2193 . . . 4 (+g‘(mulGrp‘𝑅)) = (+g‘(mulGrp‘𝑅))
1311, 12cmncom 13375 . . 3 (((mulGrp‘𝑅) ∈ CMnd ∧ 𝑋 ∈ (Base‘(mulGrp‘𝑅)) ∧ 𝑌 ∈ (Base‘(mulGrp‘𝑅))) → (𝑋(+g‘(mulGrp‘𝑅))𝑌) = (𝑌(+g‘(mulGrp‘𝑅))𝑋))
143, 8, 10, 13syl3anc 1249 . 2 ((𝑅 ∈ CRing ∧ 𝑋𝐵𝑌𝐵) → (𝑋(+g‘(mulGrp‘𝑅))𝑌) = (𝑌(+g‘(mulGrp‘𝑅))𝑋))
15 ringcl.t . . . . 5 · = (.r𝑅)
161, 15mgpplusgg 13423 . . . 4 (𝑅 ∈ CRing → · = (+g‘(mulGrp‘𝑅)))
17163ad2ant1 1020 . . 3 ((𝑅 ∈ CRing ∧ 𝑋𝐵𝑌𝐵) → · = (+g‘(mulGrp‘𝑅)))
1817oveqd 5936 . 2 ((𝑅 ∈ CRing ∧ 𝑋𝐵𝑌𝐵) → (𝑋 · 𝑌) = (𝑋(+g‘(mulGrp‘𝑅))𝑌))
1917oveqd 5936 . 2 ((𝑅 ∈ CRing ∧ 𝑋𝐵𝑌𝐵) → (𝑌 · 𝑋) = (𝑌(+g‘(mulGrp‘𝑅))𝑋))
2014, 18, 193eqtr4d 2236 1 ((𝑅 ∈ CRing ∧ 𝑋𝐵𝑌𝐵) → (𝑋 · 𝑌) = (𝑌 · 𝑋))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 980   = wceq 1364  wcel 2164  cfv 5255  (class class class)co 5919  Basecbs 12621  +gcplusg 12698  .rcmulr 12699  CMndccmn 13357  mulGrpcmgp 13419  CRingccrg 13496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-iota 5216  df-fun 5257  df-fn 5258  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-3 9044  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-plusg 12711  df-mulr 12712  df-cmn 13359  df-mgp 13420  df-cring 13498
This theorem is referenced by:  crngoppr  13571  unitmulclb  13613  rdivmuldivd  13643  rmodislmodlem  13849  quscrng  14032
  Copyright terms: Public domain W3C validator