| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > crngcom | GIF version | ||
| Description: A commutative ring's multiplication operation is commutative. (Contributed by Mario Carneiro, 7-Jan-2015.) |
| Ref | Expression |
|---|---|
| ringcl.b | ⊢ 𝐵 = (Base‘𝑅) |
| ringcl.t | ⊢ · = (.r‘𝑅) |
| Ref | Expression |
|---|---|
| crngcom | ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) = (𝑌 · 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2204 | . . . . 5 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
| 2 | 1 | crngmgp 13708 | . . . 4 ⊢ (𝑅 ∈ CRing → (mulGrp‘𝑅) ∈ CMnd) |
| 3 | 2 | 3ad2ant1 1020 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (mulGrp‘𝑅) ∈ CMnd) |
| 4 | simp2 1000 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 5 | ringcl.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 6 | 1, 5 | mgpbasg 13630 | . . . . 5 ⊢ (𝑅 ∈ CRing → 𝐵 = (Base‘(mulGrp‘𝑅))) |
| 7 | 6 | 3ad2ant1 1020 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐵 = (Base‘(mulGrp‘𝑅))) |
| 8 | 4, 7 | eleqtrd 2283 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ (Base‘(mulGrp‘𝑅))) |
| 9 | simp3 1001 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
| 10 | 9, 7 | eleqtrd 2283 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ (Base‘(mulGrp‘𝑅))) |
| 11 | eqid 2204 | . . . 4 ⊢ (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅)) | |
| 12 | eqid 2204 | . . . 4 ⊢ (+g‘(mulGrp‘𝑅)) = (+g‘(mulGrp‘𝑅)) | |
| 13 | 11, 12 | cmncom 13580 | . . 3 ⊢ (((mulGrp‘𝑅) ∈ CMnd ∧ 𝑋 ∈ (Base‘(mulGrp‘𝑅)) ∧ 𝑌 ∈ (Base‘(mulGrp‘𝑅))) → (𝑋(+g‘(mulGrp‘𝑅))𝑌) = (𝑌(+g‘(mulGrp‘𝑅))𝑋)) |
| 14 | 3, 8, 10, 13 | syl3anc 1249 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋(+g‘(mulGrp‘𝑅))𝑌) = (𝑌(+g‘(mulGrp‘𝑅))𝑋)) |
| 15 | ringcl.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
| 16 | 1, 15 | mgpplusgg 13628 | . . . 4 ⊢ (𝑅 ∈ CRing → · = (+g‘(mulGrp‘𝑅))) |
| 17 | 16 | 3ad2ant1 1020 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → · = (+g‘(mulGrp‘𝑅))) |
| 18 | 17 | oveqd 5960 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) = (𝑋(+g‘(mulGrp‘𝑅))𝑌)) |
| 19 | 17 | oveqd 5960 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌 · 𝑋) = (𝑌(+g‘(mulGrp‘𝑅))𝑋)) |
| 20 | 14, 18, 19 | 3eqtr4d 2247 | 1 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) = (𝑌 · 𝑋)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 980 = wceq 1372 ∈ wcel 2175 ‘cfv 5270 (class class class)co 5943 Basecbs 12774 +gcplusg 12851 .rcmulr 12852 CMndccmn 13562 mulGrpcmgp 13624 CRingccrg 13701 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-i2m1 8029 ax-0lt1 8030 ax-0id 8032 ax-rnegex 8033 ax-pre-ltirr 8036 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-iota 5231 df-fun 5272 df-fn 5273 df-fv 5278 df-ov 5946 df-oprab 5947 df-mpo 5948 df-pnf 8108 df-mnf 8109 df-ltxr 8111 df-inn 9036 df-2 9094 df-3 9095 df-ndx 12777 df-slot 12778 df-base 12780 df-sets 12781 df-plusg 12864 df-mulr 12865 df-cmn 13564 df-mgp 13625 df-cring 13703 |
| This theorem is referenced by: crngoppr 13776 unitmulclb 13818 rdivmuldivd 13848 rmodislmodlem 14054 quscrng 14237 |
| Copyright terms: Public domain | W3C validator |