ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrgcrng GIF version

Theorem subrgcrng 13351
Description: A subring of a commutative ring is a commutative ring. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypothesis
Ref Expression
subrgring.1 𝑆 = (𝑅s 𝐴)
Assertion
Ref Expression
subrgcrng ((𝑅 ∈ CRing ∧ 𝐴 ∈ (SubRing‘𝑅)) → 𝑆 ∈ CRing)

Proof of Theorem subrgcrng
StepHypRef Expression
1 subrgring.1 . . . 4 𝑆 = (𝑅s 𝐴)
21subrgring 13350 . . 3 (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring)
32adantl 277 . 2 ((𝑅 ∈ CRing ∧ 𝐴 ∈ (SubRing‘𝑅)) → 𝑆 ∈ Ring)
4 eqid 2177 . . . 4 (mulGrp‘𝑅) = (mulGrp‘𝑅)
51, 4mgpress 13146 . . 3 ((𝑅 ∈ CRing ∧ 𝐴 ∈ (SubRing‘𝑅)) → ((mulGrp‘𝑅) ↾s 𝐴) = (mulGrp‘𝑆))
6 eqidd 2178 . . . 4 ((𝑅 ∈ CRing ∧ 𝐴 ∈ (SubRing‘𝑅)) → ((mulGrp‘𝑅) ↾s 𝐴) = ((mulGrp‘𝑅) ↾s 𝐴))
74crngmgp 13192 . . . . 5 (𝑅 ∈ CRing → (mulGrp‘𝑅) ∈ CMnd)
87adantr 276 . . . 4 ((𝑅 ∈ CRing ∧ 𝐴 ∈ (SubRing‘𝑅)) → (mulGrp‘𝑅) ∈ CMnd)
9 eqid 2177 . . . . . . 7 (mulGrp‘𝑆) = (mulGrp‘𝑆)
109ringmgp 13190 . . . . . 6 (𝑆 ∈ Ring → (mulGrp‘𝑆) ∈ Mnd)
113, 10syl 14 . . . . 5 ((𝑅 ∈ CRing ∧ 𝐴 ∈ (SubRing‘𝑅)) → (mulGrp‘𝑆) ∈ Mnd)
125, 11eqeltrd 2254 . . . 4 ((𝑅 ∈ CRing ∧ 𝐴 ∈ (SubRing‘𝑅)) → ((mulGrp‘𝑅) ↾s 𝐴) ∈ Mnd)
13 simpr 110 . . . 4 ((𝑅 ∈ CRing ∧ 𝐴 ∈ (SubRing‘𝑅)) → 𝐴 ∈ (SubRing‘𝑅))
146, 8, 12, 13subcmnd 13134 . . 3 ((𝑅 ∈ CRing ∧ 𝐴 ∈ (SubRing‘𝑅)) → ((mulGrp‘𝑅) ↾s 𝐴) ∈ CMnd)
155, 14eqeltrrd 2255 . 2 ((𝑅 ∈ CRing ∧ 𝐴 ∈ (SubRing‘𝑅)) → (mulGrp‘𝑆) ∈ CMnd)
169iscrng 13191 . 2 (𝑆 ∈ CRing ↔ (𝑆 ∈ Ring ∧ (mulGrp‘𝑆) ∈ CMnd))
173, 15, 16sylanbrc 417 1 ((𝑅 ∈ CRing ∧ 𝐴 ∈ (SubRing‘𝑅)) → 𝑆 ∈ CRing)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  cfv 5218  (class class class)co 5877  s cress 12465  Mndcmnd 12822  CMndccmn 13093  mulGrpcmgp 13135  Ringcrg 13184  CRingccrg 13185  SubRingcsubrg 13343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-pre-ltirr 7925  ax-pre-lttrn 7927  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-ltxr 7999  df-inn 8922  df-2 8980  df-3 8981  df-ndx 12467  df-slot 12468  df-base 12470  df-sets 12471  df-iress 12472  df-plusg 12551  df-mulr 12552  df-cmn 13095  df-mgp 13136  df-ring 13186  df-cring 13187  df-subrg 13345
This theorem is referenced by:  zringcrng  13567
  Copyright terms: Public domain W3C validator