| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > subrgcrng | GIF version | ||
| Description: A subring of a commutative ring is a commutative ring. (Contributed by Mario Carneiro, 10-Jan-2015.) |
| Ref | Expression |
|---|---|
| subrgring.1 | ⊢ 𝑆 = (𝑅 ↾s 𝐴) |
| Ref | Expression |
|---|---|
| subrgcrng | ⊢ ((𝑅 ∈ CRing ∧ 𝐴 ∈ (SubRing‘𝑅)) → 𝑆 ∈ CRing) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgring.1 | . . . 4 ⊢ 𝑆 = (𝑅 ↾s 𝐴) | |
| 2 | 1 | subrgring 13904 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring) |
| 3 | 2 | adantl 277 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝐴 ∈ (SubRing‘𝑅)) → 𝑆 ∈ Ring) |
| 4 | eqid 2204 | . . . 4 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
| 5 | 1, 4 | mgpress 13611 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝐴 ∈ (SubRing‘𝑅)) → ((mulGrp‘𝑅) ↾s 𝐴) = (mulGrp‘𝑆)) |
| 6 | eqidd 2205 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝐴 ∈ (SubRing‘𝑅)) → ((mulGrp‘𝑅) ↾s 𝐴) = ((mulGrp‘𝑅) ↾s 𝐴)) | |
| 7 | 4 | crngmgp 13684 | . . . . 5 ⊢ (𝑅 ∈ CRing → (mulGrp‘𝑅) ∈ CMnd) |
| 8 | 7 | adantr 276 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝐴 ∈ (SubRing‘𝑅)) → (mulGrp‘𝑅) ∈ CMnd) |
| 9 | eqid 2204 | . . . . . . 7 ⊢ (mulGrp‘𝑆) = (mulGrp‘𝑆) | |
| 10 | 9 | ringmgp 13682 | . . . . . 6 ⊢ (𝑆 ∈ Ring → (mulGrp‘𝑆) ∈ Mnd) |
| 11 | 3, 10 | syl 14 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝐴 ∈ (SubRing‘𝑅)) → (mulGrp‘𝑆) ∈ Mnd) |
| 12 | 5, 11 | eqeltrd 2281 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝐴 ∈ (SubRing‘𝑅)) → ((mulGrp‘𝑅) ↾s 𝐴) ∈ Mnd) |
| 13 | simpr 110 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝐴 ∈ (SubRing‘𝑅)) → 𝐴 ∈ (SubRing‘𝑅)) | |
| 14 | 6, 8, 12, 13 | subcmnd 13587 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝐴 ∈ (SubRing‘𝑅)) → ((mulGrp‘𝑅) ↾s 𝐴) ∈ CMnd) |
| 15 | 5, 14 | eqeltrrd 2282 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝐴 ∈ (SubRing‘𝑅)) → (mulGrp‘𝑆) ∈ CMnd) |
| 16 | 9 | iscrng 13683 | . 2 ⊢ (𝑆 ∈ CRing ↔ (𝑆 ∈ Ring ∧ (mulGrp‘𝑆) ∈ CMnd)) |
| 17 | 3, 15, 16 | sylanbrc 417 | 1 ⊢ ((𝑅 ∈ CRing ∧ 𝐴 ∈ (SubRing‘𝑅)) → 𝑆 ∈ CRing) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1372 ∈ wcel 2175 ‘cfv 5268 (class class class)co 5934 ↾s cress 12752 Mndcmnd 13166 CMndccmn 13538 mulGrpcmgp 13600 Ringcrg 13676 CRingccrg 13677 SubRingcsubrg 13897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-cnex 7998 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-addcom 8007 ax-addass 8009 ax-i2m1 8012 ax-0lt1 8013 ax-0id 8015 ax-rnegex 8016 ax-pre-ltirr 8019 ax-pre-lttrn 8021 ax-pre-ltadd 8023 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4338 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-fv 5276 df-ov 5937 df-oprab 5938 df-mpo 5939 df-pnf 8091 df-mnf 8092 df-ltxr 8094 df-inn 9019 df-2 9077 df-3 9078 df-ndx 12754 df-slot 12755 df-base 12757 df-sets 12758 df-iress 12759 df-plusg 12841 df-mulr 12842 df-cmn 13540 df-mgp 13601 df-ring 13678 df-cring 13679 df-subrg 13899 |
| This theorem is referenced by: zringcrng 14272 |
| Copyright terms: Public domain | W3C validator |