| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > subrgcrng | GIF version | ||
| Description: A subring of a commutative ring is a commutative ring. (Contributed by Mario Carneiro, 10-Jan-2015.) |
| Ref | Expression |
|---|---|
| subrgring.1 | ⊢ 𝑆 = (𝑅 ↾s 𝐴) |
| Ref | Expression |
|---|---|
| subrgcrng | ⊢ ((𝑅 ∈ CRing ∧ 𝐴 ∈ (SubRing‘𝑅)) → 𝑆 ∈ CRing) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgring.1 | . . . 4 ⊢ 𝑆 = (𝑅 ↾s 𝐴) | |
| 2 | 1 | subrgring 14061 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring) |
| 3 | 2 | adantl 277 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝐴 ∈ (SubRing‘𝑅)) → 𝑆 ∈ Ring) |
| 4 | eqid 2206 | . . . 4 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
| 5 | 1, 4 | mgpress 13768 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝐴 ∈ (SubRing‘𝑅)) → ((mulGrp‘𝑅) ↾s 𝐴) = (mulGrp‘𝑆)) |
| 6 | eqidd 2207 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝐴 ∈ (SubRing‘𝑅)) → ((mulGrp‘𝑅) ↾s 𝐴) = ((mulGrp‘𝑅) ↾s 𝐴)) | |
| 7 | 4 | crngmgp 13841 | . . . . 5 ⊢ (𝑅 ∈ CRing → (mulGrp‘𝑅) ∈ CMnd) |
| 8 | 7 | adantr 276 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝐴 ∈ (SubRing‘𝑅)) → (mulGrp‘𝑅) ∈ CMnd) |
| 9 | eqid 2206 | . . . . . . 7 ⊢ (mulGrp‘𝑆) = (mulGrp‘𝑆) | |
| 10 | 9 | ringmgp 13839 | . . . . . 6 ⊢ (𝑆 ∈ Ring → (mulGrp‘𝑆) ∈ Mnd) |
| 11 | 3, 10 | syl 14 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝐴 ∈ (SubRing‘𝑅)) → (mulGrp‘𝑆) ∈ Mnd) |
| 12 | 5, 11 | eqeltrd 2283 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝐴 ∈ (SubRing‘𝑅)) → ((mulGrp‘𝑅) ↾s 𝐴) ∈ Mnd) |
| 13 | simpr 110 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝐴 ∈ (SubRing‘𝑅)) → 𝐴 ∈ (SubRing‘𝑅)) | |
| 14 | 6, 8, 12, 13 | subcmnd 13744 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝐴 ∈ (SubRing‘𝑅)) → ((mulGrp‘𝑅) ↾s 𝐴) ∈ CMnd) |
| 15 | 5, 14 | eqeltrrd 2284 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝐴 ∈ (SubRing‘𝑅)) → (mulGrp‘𝑆) ∈ CMnd) |
| 16 | 9 | iscrng 13840 | . 2 ⊢ (𝑆 ∈ CRing ↔ (𝑆 ∈ Ring ∧ (mulGrp‘𝑆) ∈ CMnd)) |
| 17 | 3, 15, 16 | sylanbrc 417 | 1 ⊢ ((𝑅 ∈ CRing ∧ 𝐴 ∈ (SubRing‘𝑅)) → 𝑆 ∈ CRing) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 ‘cfv 5280 (class class class)co 5957 ↾s cress 12908 Mndcmnd 13323 CMndccmn 13695 mulGrpcmgp 13757 Ringcrg 13833 CRingccrg 13834 SubRingcsubrg 14054 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-addcom 8045 ax-addass 8047 ax-i2m1 8050 ax-0lt1 8051 ax-0id 8053 ax-rnegex 8054 ax-pre-ltirr 8057 ax-pre-lttrn 8059 ax-pre-ltadd 8061 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-fv 5288 df-ov 5960 df-oprab 5961 df-mpo 5962 df-pnf 8129 df-mnf 8130 df-ltxr 8132 df-inn 9057 df-2 9115 df-3 9116 df-ndx 12910 df-slot 12911 df-base 12913 df-sets 12914 df-iress 12915 df-plusg 12997 df-mulr 12998 df-cmn 13697 df-mgp 13758 df-ring 13835 df-cring 13836 df-subrg 14056 |
| This theorem is referenced by: zringcrng 14429 |
| Copyright terms: Public domain | W3C validator |