| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmxpm | GIF version | ||
| Description: The domain of a cross product. Part of Theorem 3.13(x) of [Monk1] p. 37. (Contributed by NM, 28-Jul-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| dmxpm | ⊢ (∃𝑥 𝑥 ∈ 𝐵 → dom (𝐴 × 𝐵) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2272 | . . 3 ⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝐵 ↔ 𝑧 ∈ 𝐵)) | |
| 2 | 1 | cbvexv 1945 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐵 ↔ ∃𝑧 𝑧 ∈ 𝐵) |
| 3 | df-xp 4702 | . . . 4 ⊢ (𝐴 × 𝐵) = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)} | |
| 4 | 3 | dmeqi 4901 | . . 3 ⊢ dom (𝐴 × 𝐵) = dom {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)} |
| 5 | id 19 | . . . . 5 ⊢ (∃𝑧 𝑧 ∈ 𝐵 → ∃𝑧 𝑧 ∈ 𝐵) | |
| 6 | 5 | ralrimivw 2584 | . . . 4 ⊢ (∃𝑧 𝑧 ∈ 𝐵 → ∀𝑦 ∈ 𝐴 ∃𝑧 𝑧 ∈ 𝐵) |
| 7 | dmopab3 4913 | . . . 4 ⊢ (∀𝑦 ∈ 𝐴 ∃𝑧 𝑧 ∈ 𝐵 ↔ dom {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)} = 𝐴) | |
| 8 | 6, 7 | sylib 122 | . . 3 ⊢ (∃𝑧 𝑧 ∈ 𝐵 → dom {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)} = 𝐴) |
| 9 | 4, 8 | eqtrid 2254 | . 2 ⊢ (∃𝑧 𝑧 ∈ 𝐵 → dom (𝐴 × 𝐵) = 𝐴) |
| 10 | 2, 9 | sylbi 121 | 1 ⊢ (∃𝑥 𝑥 ∈ 𝐵 → dom (𝐴 × 𝐵) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1375 ∃wex 1518 ∈ wcel 2180 ∀wral 2488 {copab 4123 × cxp 4694 dom cdm 4696 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-v 2781 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-br 4063 df-opab 4125 df-xp 4702 df-dm 4706 |
| This theorem is referenced by: rnxpm 5134 ssxpbm 5140 ssxp1 5141 xpexr2m 5146 relrelss 5231 unixpm 5240 exmidfodomrlemim 7347 pwsbas 13291 imasaddfnlemg 13313 |
| Copyright terms: Public domain | W3C validator |