ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmxpm GIF version

Theorem dmxpm 4849
Description: The domain of a cross product. Part of Theorem 3.13(x) of [Monk1] p. 37. (Contributed by NM, 28-Jul-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dmxpm (∃𝑥 𝑥𝐵 → dom (𝐴 × 𝐵) = 𝐴)
Distinct variable group:   𝑥,𝐵
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem dmxpm
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2240 . . 3 (𝑥 = 𝑧 → (𝑥𝐵𝑧𝐵))
21cbvexv 1918 . 2 (∃𝑥 𝑥𝐵 ↔ ∃𝑧 𝑧𝐵)
3 df-xp 4634 . . . 4 (𝐴 × 𝐵) = {⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧𝐵)}
43dmeqi 4830 . . 3 dom (𝐴 × 𝐵) = dom {⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧𝐵)}
5 id 19 . . . . 5 (∃𝑧 𝑧𝐵 → ∃𝑧 𝑧𝐵)
65ralrimivw 2551 . . . 4 (∃𝑧 𝑧𝐵 → ∀𝑦𝐴𝑧 𝑧𝐵)
7 dmopab3 4842 . . . 4 (∀𝑦𝐴𝑧 𝑧𝐵 ↔ dom {⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧𝐵)} = 𝐴)
86, 7sylib 122 . . 3 (∃𝑧 𝑧𝐵 → dom {⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧𝐵)} = 𝐴)
94, 8eqtrid 2222 . 2 (∃𝑧 𝑧𝐵 → dom (𝐴 × 𝐵) = 𝐴)
102, 9sylbi 121 1 (∃𝑥 𝑥𝐵 → dom (𝐴 × 𝐵) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wex 1492  wcel 2148  wral 2455  {copab 4065   × cxp 4626  dom cdm 4628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-xp 4634  df-dm 4638
This theorem is referenced by:  rnxpm  5060  ssxpbm  5066  ssxp1  5067  xpexr2m  5072  relrelss  5157  unixpm  5166  exmidfodomrlemim  7202  imasaddfnlemg  12740
  Copyright terms: Public domain W3C validator