ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmxpm GIF version

Theorem dmxpm 4883
Description: The domain of a cross product. Part of Theorem 3.13(x) of [Monk1] p. 37. (Contributed by NM, 28-Jul-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dmxpm (∃𝑥 𝑥𝐵 → dom (𝐴 × 𝐵) = 𝐴)
Distinct variable group:   𝑥,𝐵
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem dmxpm
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2256 . . 3 (𝑥 = 𝑧 → (𝑥𝐵𝑧𝐵))
21cbvexv 1930 . 2 (∃𝑥 𝑥𝐵 ↔ ∃𝑧 𝑧𝐵)
3 df-xp 4666 . . . 4 (𝐴 × 𝐵) = {⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧𝐵)}
43dmeqi 4864 . . 3 dom (𝐴 × 𝐵) = dom {⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧𝐵)}
5 id 19 . . . . 5 (∃𝑧 𝑧𝐵 → ∃𝑧 𝑧𝐵)
65ralrimivw 2568 . . . 4 (∃𝑧 𝑧𝐵 → ∀𝑦𝐴𝑧 𝑧𝐵)
7 dmopab3 4876 . . . 4 (∀𝑦𝐴𝑧 𝑧𝐵 ↔ dom {⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧𝐵)} = 𝐴)
86, 7sylib 122 . . 3 (∃𝑧 𝑧𝐵 → dom {⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧𝐵)} = 𝐴)
94, 8eqtrid 2238 . 2 (∃𝑧 𝑧𝐵 → dom (𝐴 × 𝐵) = 𝐴)
102, 9sylbi 121 1 (∃𝑥 𝑥𝐵 → dom (𝐴 × 𝐵) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wex 1503  wcel 2164  wral 2472  {copab 4090   × cxp 4658  dom cdm 4660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031  df-opab 4092  df-xp 4666  df-dm 4670
This theorem is referenced by:  rnxpm  5096  ssxpbm  5102  ssxp1  5103  xpexr2m  5108  relrelss  5193  unixpm  5202  exmidfodomrlemim  7263  imasaddfnlemg  12900
  Copyright terms: Public domain W3C validator