![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dmxpm | GIF version |
Description: The domain of a cross product. Part of Theorem 3.13(x) of [Monk1] p. 37. (Contributed by NM, 28-Jul-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
dmxpm | ⊢ (∃𝑥 𝑥 ∈ 𝐵 → dom (𝐴 × 𝐵) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2256 | . . 3 ⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝐵 ↔ 𝑧 ∈ 𝐵)) | |
2 | 1 | cbvexv 1930 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐵 ↔ ∃𝑧 𝑧 ∈ 𝐵) |
3 | df-xp 4665 | . . . 4 ⊢ (𝐴 × 𝐵) = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)} | |
4 | 3 | dmeqi 4863 | . . 3 ⊢ dom (𝐴 × 𝐵) = dom {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)} |
5 | id 19 | . . . . 5 ⊢ (∃𝑧 𝑧 ∈ 𝐵 → ∃𝑧 𝑧 ∈ 𝐵) | |
6 | 5 | ralrimivw 2568 | . . . 4 ⊢ (∃𝑧 𝑧 ∈ 𝐵 → ∀𝑦 ∈ 𝐴 ∃𝑧 𝑧 ∈ 𝐵) |
7 | dmopab3 4875 | . . . 4 ⊢ (∀𝑦 ∈ 𝐴 ∃𝑧 𝑧 ∈ 𝐵 ↔ dom {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)} = 𝐴) | |
8 | 6, 7 | sylib 122 | . . 3 ⊢ (∃𝑧 𝑧 ∈ 𝐵 → dom {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)} = 𝐴) |
9 | 4, 8 | eqtrid 2238 | . 2 ⊢ (∃𝑧 𝑧 ∈ 𝐵 → dom (𝐴 × 𝐵) = 𝐴) |
10 | 2, 9 | sylbi 121 | 1 ⊢ (∃𝑥 𝑥 ∈ 𝐵 → dom (𝐴 × 𝐵) = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∃wex 1503 ∈ wcel 2164 ∀wral 2472 {copab 4089 × cxp 4657 dom cdm 4659 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 df-opab 4091 df-xp 4665 df-dm 4669 |
This theorem is referenced by: rnxpm 5095 ssxpbm 5101 ssxp1 5102 xpexr2m 5107 relrelss 5192 unixpm 5201 exmidfodomrlemim 7261 imasaddfnlemg 12897 |
Copyright terms: Public domain | W3C validator |