![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dmxpm | GIF version |
Description: The domain of a cross product. Part of Theorem 3.13(x) of [Monk1] p. 37. (Contributed by NM, 28-Jul-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
dmxpm | ⊢ (∃𝑥 𝑥 ∈ 𝐵 → dom (𝐴 × 𝐵) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2157 | . . 3 ⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝐵 ↔ 𝑧 ∈ 𝐵)) | |
2 | 1 | cbvexv 1850 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐵 ↔ ∃𝑧 𝑧 ∈ 𝐵) |
3 | df-xp 4473 | . . . 4 ⊢ (𝐴 × 𝐵) = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)} | |
4 | 3 | dmeqi 4668 | . . 3 ⊢ dom (𝐴 × 𝐵) = dom {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)} |
5 | id 19 | . . . . 5 ⊢ (∃𝑧 𝑧 ∈ 𝐵 → ∃𝑧 𝑧 ∈ 𝐵) | |
6 | 5 | ralrimivw 2459 | . . . 4 ⊢ (∃𝑧 𝑧 ∈ 𝐵 → ∀𝑦 ∈ 𝐴 ∃𝑧 𝑧 ∈ 𝐵) |
7 | dmopab3 4680 | . . . 4 ⊢ (∀𝑦 ∈ 𝐴 ∃𝑧 𝑧 ∈ 𝐵 ↔ dom {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)} = 𝐴) | |
8 | 6, 7 | sylib 121 | . . 3 ⊢ (∃𝑧 𝑧 ∈ 𝐵 → dom {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)} = 𝐴) |
9 | 4, 8 | syl5eq 2139 | . 2 ⊢ (∃𝑧 𝑧 ∈ 𝐵 → dom (𝐴 × 𝐵) = 𝐴) |
10 | 2, 9 | sylbi 120 | 1 ⊢ (∃𝑥 𝑥 ∈ 𝐵 → dom (𝐴 × 𝐵) = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1296 ∃wex 1433 ∈ wcel 1445 ∀wral 2370 {copab 3920 × cxp 4465 dom cdm 4467 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-sep 3978 ax-pow 4030 ax-pr 4060 |
This theorem depends on definitions: df-bi 116 df-3an 929 df-tru 1299 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ral 2375 df-v 2635 df-un 3017 df-in 3019 df-ss 3026 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-br 3868 df-opab 3922 df-xp 4473 df-dm 4477 |
This theorem is referenced by: rnxpm 4894 ssxpbm 4900 ssxp1 4901 xpexr2m 4906 relrelss 4991 unixpm 5000 exmidfodomrlemim 6924 |
Copyright terms: Public domain | W3C validator |