| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmxpm | GIF version | ||
| Description: The domain of a cross product. Part of Theorem 3.13(x) of [Monk1] p. 37. (Contributed by NM, 28-Jul-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| dmxpm | ⊢ (∃𝑥 𝑥 ∈ 𝐵 → dom (𝐴 × 𝐵) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2292 | . . 3 ⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝐵 ↔ 𝑧 ∈ 𝐵)) | |
| 2 | 1 | cbvexv 1965 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐵 ↔ ∃𝑧 𝑧 ∈ 𝐵) |
| 3 | df-xp 4725 | . . . 4 ⊢ (𝐴 × 𝐵) = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)} | |
| 4 | 3 | dmeqi 4924 | . . 3 ⊢ dom (𝐴 × 𝐵) = dom {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)} |
| 5 | id 19 | . . . . 5 ⊢ (∃𝑧 𝑧 ∈ 𝐵 → ∃𝑧 𝑧 ∈ 𝐵) | |
| 6 | 5 | ralrimivw 2604 | . . . 4 ⊢ (∃𝑧 𝑧 ∈ 𝐵 → ∀𝑦 ∈ 𝐴 ∃𝑧 𝑧 ∈ 𝐵) |
| 7 | dmopab3 4936 | . . . 4 ⊢ (∀𝑦 ∈ 𝐴 ∃𝑧 𝑧 ∈ 𝐵 ↔ dom {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)} = 𝐴) | |
| 8 | 6, 7 | sylib 122 | . . 3 ⊢ (∃𝑧 𝑧 ∈ 𝐵 → dom {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)} = 𝐴) |
| 9 | 4, 8 | eqtrid 2274 | . 2 ⊢ (∃𝑧 𝑧 ∈ 𝐵 → dom (𝐴 × 𝐵) = 𝐴) |
| 10 | 2, 9 | sylbi 121 | 1 ⊢ (∃𝑥 𝑥 ∈ 𝐵 → dom (𝐴 × 𝐵) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∃wex 1538 ∈ wcel 2200 ∀wral 2508 {copab 4144 × cxp 4717 dom cdm 4719 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-opab 4146 df-xp 4725 df-dm 4729 |
| This theorem is referenced by: rnxpm 5158 ssxpbm 5164 ssxp1 5165 xpexr2m 5170 relrelss 5255 unixpm 5264 exmidfodomrlemim 7387 pwsbas 13333 imasaddfnlemg 13355 |
| Copyright terms: Public domain | W3C validator |