ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmxpm GIF version

Theorem dmxpm 4824
Description: The domain of a cross product. Part of Theorem 3.13(x) of [Monk1] p. 37. (Contributed by NM, 28-Jul-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dmxpm (∃𝑥 𝑥𝐵 → dom (𝐴 × 𝐵) = 𝐴)
Distinct variable group:   𝑥,𝐵
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem dmxpm
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2229 . . 3 (𝑥 = 𝑧 → (𝑥𝐵𝑧𝐵))
21cbvexv 1906 . 2 (∃𝑥 𝑥𝐵 ↔ ∃𝑧 𝑧𝐵)
3 df-xp 4610 . . . 4 (𝐴 × 𝐵) = {⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧𝐵)}
43dmeqi 4805 . . 3 dom (𝐴 × 𝐵) = dom {⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧𝐵)}
5 id 19 . . . . 5 (∃𝑧 𝑧𝐵 → ∃𝑧 𝑧𝐵)
65ralrimivw 2540 . . . 4 (∃𝑧 𝑧𝐵 → ∀𝑦𝐴𝑧 𝑧𝐵)
7 dmopab3 4817 . . . 4 (∀𝑦𝐴𝑧 𝑧𝐵 ↔ dom {⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧𝐵)} = 𝐴)
86, 7sylib 121 . . 3 (∃𝑧 𝑧𝐵 → dom {⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧𝐵)} = 𝐴)
94, 8syl5eq 2211 . 2 (∃𝑧 𝑧𝐵 → dom (𝐴 × 𝐵) = 𝐴)
102, 9sylbi 120 1 (∃𝑥 𝑥𝐵 → dom (𝐴 × 𝐵) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wex 1480  wcel 2136  wral 2444  {copab 4042   × cxp 4602  dom cdm 4604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-dm 4614
This theorem is referenced by:  rnxpm  5033  ssxpbm  5039  ssxp1  5040  xpexr2m  5045  relrelss  5130  unixpm  5139  exmidfodomrlemim  7157
  Copyright terms: Public domain W3C validator