ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elxp GIF version

Theorem elxp 4628
Description: Membership in a cross product. (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
elxp (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦

Proof of Theorem elxp
StepHypRef Expression
1 df-xp 4617 . . 3 (𝐵 × 𝐶) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐶)}
21eleq2i 2237 . 2 (𝐴 ∈ (𝐵 × 𝐶) ↔ 𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐶)})
3 elopab 4243 . 2 (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐶)} ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)))
42, 3bitri 183 1 (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104   = wceq 1348  wex 1485  wcel 2141  cop 3586  {copab 4049   × cxp 4609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-opab 4051  df-xp 4617
This theorem is referenced by:  elxp2  4629  0nelxp  4639  0nelelxp  4640  rabxp  4648  elxp3  4665  elvv  4673  elvvv  4674  0xp  4691  xpmlem  5031  elxp4  5098  elxp5  5099  dfco2a  5111  opabex3d  6100  opabex3  6101  xp1st  6144  xp2nd  6145  poxp  6211  xpsnen  6799  xpcomco  6804  xpassen  6808  nqnq0pi  7400  fsum2dlemstep  11397  fprod2dlemstep  11585
  Copyright terms: Public domain W3C validator