![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elxp | GIF version |
Description: Membership in a cross product. (Contributed by NM, 4-Jul-1994.) |
Ref | Expression |
---|---|
elxp | ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xp 4633 | . . 3 ⊢ (𝐵 × 𝐶) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)} | |
2 | 1 | eleq2i 2244 | . 2 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ 𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)}) |
3 | elopab 4259 | . 2 ⊢ (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)} ↔ ∃𝑥∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) | |
4 | 2, 3 | bitri 184 | 1 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1353 ∃wex 1492 ∈ wcel 2148 ⟨cop 3596 {copab 4064 × cxp 4625 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-pr 4210 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2740 df-un 3134 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-opab 4066 df-xp 4633 |
This theorem is referenced by: elxp2 4645 0nelxp 4655 0nelelxp 4656 rabxp 4664 elxp3 4681 elvv 4689 elvvv 4690 0xp 4707 xpmlem 5050 elxp4 5117 elxp5 5118 dfco2a 5130 opabex3d 6122 opabex3 6123 xp1st 6166 xp2nd 6167 poxp 6233 xpsnen 6821 xpcomco 6826 xpassen 6830 nqnq0pi 7437 fsum2dlemstep 11442 fprod2dlemstep 11630 |
Copyright terms: Public domain | W3C validator |