![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dmxpid | GIF version |
Description: The domain of a square Cartesian product. (Contributed by NM, 28-Jul-1995.) (Revised by Jim Kingdon, 11-Apr-2023.) |
Ref | Expression |
---|---|
dmxpid | ⊢ dom (𝐴 × 𝐴) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xp 4483 | . . 3 ⊢ (𝐴 × 𝐴) = {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)} | |
2 | 1 | dmeqi 4678 | . 2 ⊢ dom (𝐴 × 𝐴) = dom {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)} |
3 | elex2 2657 | . . . 4 ⊢ (𝑦 ∈ 𝐴 → ∃𝑥 𝑥 ∈ 𝐴) | |
4 | 3 | rgen 2444 | . . 3 ⊢ ∀𝑦 ∈ 𝐴 ∃𝑥 𝑥 ∈ 𝐴 |
5 | dmopab3 4690 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 ∃𝑥 𝑥 ∈ 𝐴 ↔ dom {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)} = 𝐴) | |
6 | 4, 5 | mpbi 144 | . 2 ⊢ dom {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)} = 𝐴 |
7 | 2, 6 | eqtri 2120 | 1 ⊢ dom (𝐴 × 𝐴) = 𝐴 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1299 ∃wex 1436 ∈ wcel 1448 ∀wral 2375 {copab 3928 × cxp 4475 dom cdm 4477 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-sep 3986 ax-pow 4038 ax-pr 4069 |
This theorem depends on definitions: df-bi 116 df-3an 932 df-tru 1302 df-nf 1405 df-sb 1704 df-eu 1963 df-mo 1964 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ral 2380 df-v 2643 df-un 3025 df-in 3027 df-ss 3034 df-pw 3459 df-sn 3480 df-pr 3481 df-op 3483 df-br 3876 df-opab 3930 df-xp 4483 df-dm 4487 |
This theorem is referenced by: dmxpin 4699 xpid11 4700 sqxpeq0 4898 xpider 6430 psmetdmdm 12252 xmetdmdm 12284 |
Copyright terms: Public domain | W3C validator |