Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dmxpid | GIF version |
Description: The domain of a square Cartesian product. (Contributed by NM, 28-Jul-1995.) (Revised by Jim Kingdon, 11-Apr-2023.) |
Ref | Expression |
---|---|
dmxpid | ⊢ dom (𝐴 × 𝐴) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xp 4617 | . . 3 ⊢ (𝐴 × 𝐴) = {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)} | |
2 | 1 | dmeqi 4812 | . 2 ⊢ dom (𝐴 × 𝐴) = dom {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)} |
3 | elex2 2746 | . . . 4 ⊢ (𝑦 ∈ 𝐴 → ∃𝑥 𝑥 ∈ 𝐴) | |
4 | 3 | rgen 2523 | . . 3 ⊢ ∀𝑦 ∈ 𝐴 ∃𝑥 𝑥 ∈ 𝐴 |
5 | dmopab3 4824 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 ∃𝑥 𝑥 ∈ 𝐴 ↔ dom {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)} = 𝐴) | |
6 | 4, 5 | mpbi 144 | . 2 ⊢ dom {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)} = 𝐴 |
7 | 2, 6 | eqtri 2191 | 1 ⊢ dom (𝐴 × 𝐴) = 𝐴 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1348 ∃wex 1485 ∈ wcel 2141 ∀wral 2448 {copab 4049 × cxp 4609 dom cdm 4611 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-xp 4617 df-dm 4621 |
This theorem is referenced by: dmxpin 4833 xpid11 4834 sqxpeq0 5034 xpider 6584 psmetdmdm 13118 xmetdmdm 13150 |
Copyright terms: Public domain | W3C validator |