ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmxpid GIF version

Theorem dmxpid 4945
Description: The domain of a square Cartesian product. (Contributed by NM, 28-Jul-1995.) (Revised by Jim Kingdon, 11-Apr-2023.)
Assertion
Ref Expression
dmxpid dom (𝐴 × 𝐴) = 𝐴

Proof of Theorem dmxpid
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-xp 4725 . . 3 (𝐴 × 𝐴) = {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝑥𝐴)}
21dmeqi 4924 . 2 dom (𝐴 × 𝐴) = dom {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝑥𝐴)}
3 elex2 2816 . . . 4 (𝑦𝐴 → ∃𝑥 𝑥𝐴)
43rgen 2583 . . 3 𝑦𝐴𝑥 𝑥𝐴
5 dmopab3 4936 . . 3 (∀𝑦𝐴𝑥 𝑥𝐴 ↔ dom {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝑥𝐴)} = 𝐴)
64, 5mpbi 145 . 2 dom {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝑥𝐴)} = 𝐴
72, 6eqtri 2250 1 dom (𝐴 × 𝐴) = 𝐴
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1395  wex 1538  wcel 2200  wral 2508  {copab 4144   × cxp 4717  dom cdm 4719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-xp 4725  df-dm 4729
This theorem is referenced by:  dmxpin  4946  xpid11  4947  sqxpeq0  5152  xpider  6761  psmetdmdm  15006  xmetdmdm  15038
  Copyright terms: Public domain W3C validator