| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmxpid | GIF version | ||
| Description: The domain of a square Cartesian product. (Contributed by NM, 28-Jul-1995.) (Revised by Jim Kingdon, 11-Apr-2023.) |
| Ref | Expression |
|---|---|
| dmxpid | ⊢ dom (𝐴 × 𝐴) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xp 4702 | . . 3 ⊢ (𝐴 × 𝐴) = {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)} | |
| 2 | 1 | dmeqi 4901 | . 2 ⊢ dom (𝐴 × 𝐴) = dom {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)} |
| 3 | elex2 2796 | . . . 4 ⊢ (𝑦 ∈ 𝐴 → ∃𝑥 𝑥 ∈ 𝐴) | |
| 4 | 3 | rgen 2563 | . . 3 ⊢ ∀𝑦 ∈ 𝐴 ∃𝑥 𝑥 ∈ 𝐴 |
| 5 | dmopab3 4913 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 ∃𝑥 𝑥 ∈ 𝐴 ↔ dom {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)} = 𝐴) | |
| 6 | 4, 5 | mpbi 145 | . 2 ⊢ dom {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)} = 𝐴 |
| 7 | 2, 6 | eqtri 2230 | 1 ⊢ dom (𝐴 × 𝐴) = 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1375 ∃wex 1518 ∈ wcel 2180 ∀wral 2488 {copab 4123 × cxp 4694 dom cdm 4696 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-v 2781 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-br 4063 df-opab 4125 df-xp 4702 df-dm 4706 |
| This theorem is referenced by: dmxpin 4922 xpid11 4923 sqxpeq0 5128 xpider 6723 psmetdmdm 14963 xmetdmdm 14995 |
| Copyright terms: Public domain | W3C validator |