ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmxpid GIF version

Theorem dmxpid 4883
Description: The domain of a square Cartesian product. (Contributed by NM, 28-Jul-1995.) (Revised by Jim Kingdon, 11-Apr-2023.)
Assertion
Ref Expression
dmxpid dom (𝐴 × 𝐴) = 𝐴

Proof of Theorem dmxpid
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-xp 4665 . . 3 (𝐴 × 𝐴) = {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝑥𝐴)}
21dmeqi 4863 . 2 dom (𝐴 × 𝐴) = dom {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝑥𝐴)}
3 elex2 2776 . . . 4 (𝑦𝐴 → ∃𝑥 𝑥𝐴)
43rgen 2547 . . 3 𝑦𝐴𝑥 𝑥𝐴
5 dmopab3 4875 . . 3 (∀𝑦𝐴𝑥 𝑥𝐴 ↔ dom {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝑥𝐴)} = 𝐴)
64, 5mpbi 145 . 2 dom {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝑥𝐴)} = 𝐴
72, 6eqtri 2214 1 dom (𝐴 × 𝐴) = 𝐴
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1364  wex 1503  wcel 2164  wral 2472  {copab 4089   × cxp 4657  dom cdm 4659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-xp 4665  df-dm 4669
This theorem is referenced by:  dmxpin  4884  xpid11  4885  sqxpeq0  5089  xpider  6660  psmetdmdm  14492  xmetdmdm  14524
  Copyright terms: Public domain W3C validator