| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmxpid | GIF version | ||
| Description: The domain of a square Cartesian product. (Contributed by NM, 28-Jul-1995.) (Revised by Jim Kingdon, 11-Apr-2023.) |
| Ref | Expression |
|---|---|
| dmxpid | ⊢ dom (𝐴 × 𝐴) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xp 4669 | . . 3 ⊢ (𝐴 × 𝐴) = {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)} | |
| 2 | 1 | dmeqi 4867 | . 2 ⊢ dom (𝐴 × 𝐴) = dom {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)} |
| 3 | elex2 2779 | . . . 4 ⊢ (𝑦 ∈ 𝐴 → ∃𝑥 𝑥 ∈ 𝐴) | |
| 4 | 3 | rgen 2550 | . . 3 ⊢ ∀𝑦 ∈ 𝐴 ∃𝑥 𝑥 ∈ 𝐴 |
| 5 | dmopab3 4879 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 ∃𝑥 𝑥 ∈ 𝐴 ↔ dom {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)} = 𝐴) | |
| 6 | 4, 5 | mpbi 145 | . 2 ⊢ dom {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)} = 𝐴 |
| 7 | 2, 6 | eqtri 2217 | 1 ⊢ dom (𝐴 × 𝐴) = 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1364 ∃wex 1506 ∈ wcel 2167 ∀wral 2475 {copab 4093 × cxp 4661 dom cdm 4663 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-xp 4669 df-dm 4673 |
| This theorem is referenced by: dmxpin 4888 xpid11 4889 sqxpeq0 5093 xpider 6665 psmetdmdm 14560 xmetdmdm 14592 |
| Copyright terms: Public domain | W3C validator |