ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmxpid GIF version

Theorem dmxpid 4904
Description: The domain of a square Cartesian product. (Contributed by NM, 28-Jul-1995.) (Revised by Jim Kingdon, 11-Apr-2023.)
Assertion
Ref Expression
dmxpid dom (𝐴 × 𝐴) = 𝐴

Proof of Theorem dmxpid
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-xp 4685 . . 3 (𝐴 × 𝐴) = {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝑥𝐴)}
21dmeqi 4884 . 2 dom (𝐴 × 𝐴) = dom {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝑥𝐴)}
3 elex2 2789 . . . 4 (𝑦𝐴 → ∃𝑥 𝑥𝐴)
43rgen 2560 . . 3 𝑦𝐴𝑥 𝑥𝐴
5 dmopab3 4896 . . 3 (∀𝑦𝐴𝑥 𝑥𝐴 ↔ dom {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝑥𝐴)} = 𝐴)
64, 5mpbi 145 . 2 dom {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝑥𝐴)} = 𝐴
72, 6eqtri 2227 1 dom (𝐴 × 𝐴) = 𝐴
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1373  wex 1516  wcel 2177  wral 2485  {copab 4108   × cxp 4677  dom cdm 4679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-v 2775  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-br 4048  df-opab 4110  df-xp 4685  df-dm 4689
This theorem is referenced by:  dmxpin  4905  xpid11  4906  sqxpeq0  5111  xpider  6700  psmetdmdm  14840  xmetdmdm  14872
  Copyright terms: Public domain W3C validator