![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dmxpid | GIF version |
Description: The domain of a square Cartesian product. (Contributed by NM, 28-Jul-1995.) (Revised by Jim Kingdon, 11-Apr-2023.) |
Ref | Expression |
---|---|
dmxpid | ⊢ dom (𝐴 × 𝐴) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xp 4666 | . . 3 ⊢ (𝐴 × 𝐴) = {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)} | |
2 | 1 | dmeqi 4864 | . 2 ⊢ dom (𝐴 × 𝐴) = dom {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)} |
3 | elex2 2776 | . . . 4 ⊢ (𝑦 ∈ 𝐴 → ∃𝑥 𝑥 ∈ 𝐴) | |
4 | 3 | rgen 2547 | . . 3 ⊢ ∀𝑦 ∈ 𝐴 ∃𝑥 𝑥 ∈ 𝐴 |
5 | dmopab3 4876 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 ∃𝑥 𝑥 ∈ 𝐴 ↔ dom {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)} = 𝐴) | |
6 | 4, 5 | mpbi 145 | . 2 ⊢ dom {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)} = 𝐴 |
7 | 2, 6 | eqtri 2214 | 1 ⊢ dom (𝐴 × 𝐴) = 𝐴 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1364 ∃wex 1503 ∈ wcel 2164 ∀wral 2472 {copab 4090 × cxp 4658 dom cdm 4660 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-br 4031 df-opab 4092 df-xp 4666 df-dm 4670 |
This theorem is referenced by: dmxpin 4885 xpid11 4886 sqxpeq0 5090 xpider 6662 psmetdmdm 14503 xmetdmdm 14535 |
Copyright terms: Public domain | W3C validator |