ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmxpid GIF version

Theorem dmxpid 4921
Description: The domain of a square Cartesian product. (Contributed by NM, 28-Jul-1995.) (Revised by Jim Kingdon, 11-Apr-2023.)
Assertion
Ref Expression
dmxpid dom (𝐴 × 𝐴) = 𝐴

Proof of Theorem dmxpid
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-xp 4702 . . 3 (𝐴 × 𝐴) = {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝑥𝐴)}
21dmeqi 4901 . 2 dom (𝐴 × 𝐴) = dom {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝑥𝐴)}
3 elex2 2796 . . . 4 (𝑦𝐴 → ∃𝑥 𝑥𝐴)
43rgen 2563 . . 3 𝑦𝐴𝑥 𝑥𝐴
5 dmopab3 4913 . . 3 (∀𝑦𝐴𝑥 𝑥𝐴 ↔ dom {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝑥𝐴)} = 𝐴)
64, 5mpbi 145 . 2 dom {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝑥𝐴)} = 𝐴
72, 6eqtri 2230 1 dom (𝐴 × 𝐴) = 𝐴
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1375  wex 1518  wcel 2180  wral 2488  {copab 4123   × cxp 4694  dom cdm 4696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-v 2781  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-br 4063  df-opab 4125  df-xp 4702  df-dm 4706
This theorem is referenced by:  dmxpin  4922  xpid11  4923  sqxpeq0  5128  xpider  6723  psmetdmdm  14963  xmetdmdm  14995
  Copyright terms: Public domain W3C validator