ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvxp GIF version

Theorem cnvxp 5049
Description: The converse of a cross product. Exercise 11 of [Suppes] p. 67. (Contributed by NM, 14-Aug-1999.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
cnvxp (𝐴 × 𝐵) = (𝐵 × 𝐴)

Proof of Theorem cnvxp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnvopab 5032 . . 3 {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝑥𝐵)} = {⟨𝑥, 𝑦⟩ ∣ (𝑦𝐴𝑥𝐵)}
2 ancom 266 . . . 4 ((𝑦𝐴𝑥𝐵) ↔ (𝑥𝐵𝑦𝐴))
32opabbii 4072 . . 3 {⟨𝑥, 𝑦⟩ ∣ (𝑦𝐴𝑥𝐵)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐴)}
41, 3eqtri 2198 . 2 {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝑥𝐵)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐴)}
5 df-xp 4634 . . 3 (𝐴 × 𝐵) = {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝑥𝐵)}
65cnveqi 4804 . 2 (𝐴 × 𝐵) = {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝑥𝐵)}
7 df-xp 4634 . 2 (𝐵 × 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐴)}
84, 6, 73eqtr4i 2208 1 (𝐴 × 𝐵) = (𝐵 × 𝐴)
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1353  wcel 2148  {copab 4065   × cxp 4626  ccnv 4627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-xp 4634  df-rel 4635  df-cnv 4636
This theorem is referenced by:  xp0  5050  rnxpm  5060  rnxpss  5062  dminxp  5075  imainrect  5076  tposfo  6274  tposf  6275  xpider  6608  xpcomf1o  6827  pw1nct  14837
  Copyright terms: Public domain W3C validator