![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cnvxp | GIF version |
Description: The converse of a cross product. Exercise 11 of [Suppes] p. 67. (Contributed by NM, 14-Aug-1999.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
cnvxp | ⊢ ◡(𝐴 × 𝐵) = (𝐵 × 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvopab 5067 | . . 3 ⊢ ◡{〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} = {〈𝑥, 𝑦〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} | |
2 | ancom 266 | . . . 4 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴)) | |
3 | 2 | opabbii 4096 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴)} |
4 | 1, 3 | eqtri 2214 | . 2 ⊢ ◡{〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴)} |
5 | df-xp 4665 | . . 3 ⊢ (𝐴 × 𝐵) = {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} | |
6 | 5 | cnveqi 4837 | . 2 ⊢ ◡(𝐴 × 𝐵) = ◡{〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} |
7 | df-xp 4665 | . 2 ⊢ (𝐵 × 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴)} | |
8 | 4, 6, 7 | 3eqtr4i 2224 | 1 ⊢ ◡(𝐴 × 𝐵) = (𝐵 × 𝐴) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1364 ∈ wcel 2164 {copab 4089 × cxp 4657 ◡ccnv 4658 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 df-opab 4091 df-xp 4665 df-rel 4666 df-cnv 4667 |
This theorem is referenced by: xp0 5085 rnxpm 5095 rnxpss 5097 dminxp 5110 imainrect 5111 tposfo 6324 tposf 6325 xpider 6660 xpcomf1o 6879 pw1nct 15493 |
Copyright terms: Public domain | W3C validator |