Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > inxp | GIF version |
Description: The intersection of two cross products. Exercise 9 of [TakeutiZaring] p. 25. (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
inxp | ⊢ ((𝐴 × 𝐵) ∩ (𝐶 × 𝐷)) = ((𝐴 ∩ 𝐶) × (𝐵 ∩ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inopab 4743 | . . 3 ⊢ ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} ∩ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)}) = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷))} | |
2 | an4 581 | . . . . 5 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷))) | |
3 | elin 3310 | . . . . . 6 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐶) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶)) | |
4 | elin 3310 | . . . . . 6 ⊢ (𝑦 ∈ (𝐵 ∩ 𝐷) ↔ (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷)) | |
5 | 3, 4 | anbi12i 457 | . . . . 5 ⊢ ((𝑥 ∈ (𝐴 ∩ 𝐶) ∧ 𝑦 ∈ (𝐵 ∩ 𝐷)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷))) |
6 | 2, 5 | bitr4i 186 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)) ↔ (𝑥 ∈ (𝐴 ∩ 𝐶) ∧ 𝑦 ∈ (𝐵 ∩ 𝐷))) |
7 | 6 | opabbii 4056 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷))} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (𝐴 ∩ 𝐶) ∧ 𝑦 ∈ (𝐵 ∩ 𝐷))} |
8 | 1, 7 | eqtri 2191 | . 2 ⊢ ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} ∩ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)}) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (𝐴 ∩ 𝐶) ∧ 𝑦 ∈ (𝐵 ∩ 𝐷))} |
9 | df-xp 4617 | . . 3 ⊢ (𝐴 × 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} | |
10 | df-xp 4617 | . . 3 ⊢ (𝐶 × 𝐷) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)} | |
11 | 9, 10 | ineq12i 3326 | . 2 ⊢ ((𝐴 × 𝐵) ∩ (𝐶 × 𝐷)) = ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} ∩ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)}) |
12 | df-xp 4617 | . 2 ⊢ ((𝐴 ∩ 𝐶) × (𝐵 ∩ 𝐷)) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (𝐴 ∩ 𝐶) ∧ 𝑦 ∈ (𝐵 ∩ 𝐷))} | |
13 | 8, 11, 12 | 3eqtr4i 2201 | 1 ⊢ ((𝐴 × 𝐵) ∩ (𝐶 × 𝐷)) = ((𝐴 ∩ 𝐶) × (𝐵 ∩ 𝐷)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1348 ∈ wcel 2141 ∩ cin 3120 {copab 4049 × cxp 4609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-opab 4051 df-xp 4617 df-rel 4618 |
This theorem is referenced by: xpindi 4746 xpindir 4747 dmxpin 4833 xpssres 4926 xpdisj1 5035 xpdisj2 5036 imainrect 5056 xpima1 5057 xpima2m 5058 hashxp 10761 txbas 13052 txrest 13070 metreslem 13174 |
Copyright terms: Public domain | W3C validator |