ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inxp GIF version

Theorem inxp 4796
Description: The intersection of two cross products. Exercise 9 of [TakeutiZaring] p. 25. (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
inxp ((𝐴 × 𝐵) ∩ (𝐶 × 𝐷)) = ((𝐴𝐶) × (𝐵𝐷))

Proof of Theorem inxp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inopab 4794 . . 3 ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐵)} ∩ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝑦𝐷)}) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ (𝑥𝐶𝑦𝐷))}
2 an4 586 . . . . 5 (((𝑥𝐴𝑦𝐵) ∧ (𝑥𝐶𝑦𝐷)) ↔ ((𝑥𝐴𝑥𝐶) ∧ (𝑦𝐵𝑦𝐷)))
3 elin 3342 . . . . . 6 (𝑥 ∈ (𝐴𝐶) ↔ (𝑥𝐴𝑥𝐶))
4 elin 3342 . . . . . 6 (𝑦 ∈ (𝐵𝐷) ↔ (𝑦𝐵𝑦𝐷))
53, 4anbi12i 460 . . . . 5 ((𝑥 ∈ (𝐴𝐶) ∧ 𝑦 ∈ (𝐵𝐷)) ↔ ((𝑥𝐴𝑥𝐶) ∧ (𝑦𝐵𝑦𝐷)))
62, 5bitr4i 187 . . . 4 (((𝑥𝐴𝑦𝐵) ∧ (𝑥𝐶𝑦𝐷)) ↔ (𝑥 ∈ (𝐴𝐶) ∧ 𝑦 ∈ (𝐵𝐷)))
76opabbii 4096 . . 3 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ (𝑥𝐶𝑦𝐷))} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐴𝐶) ∧ 𝑦 ∈ (𝐵𝐷))}
81, 7eqtri 2214 . 2 ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐵)} ∩ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝑦𝐷)}) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐴𝐶) ∧ 𝑦 ∈ (𝐵𝐷))}
9 df-xp 4665 . . 3 (𝐴 × 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐵)}
10 df-xp 4665 . . 3 (𝐶 × 𝐷) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝑦𝐷)}
119, 10ineq12i 3358 . 2 ((𝐴 × 𝐵) ∩ (𝐶 × 𝐷)) = ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐵)} ∩ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝑦𝐷)})
12 df-xp 4665 . 2 ((𝐴𝐶) × (𝐵𝐷)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐴𝐶) ∧ 𝑦 ∈ (𝐵𝐷))}
138, 11, 123eqtr4i 2224 1 ((𝐴 × 𝐵) ∩ (𝐶 × 𝐷)) = ((𝐴𝐶) × (𝐵𝐷))
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1364  wcel 2164  cin 3152  {copab 4089   × cxp 4657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-opab 4091  df-xp 4665  df-rel 4666
This theorem is referenced by:  xpindi  4797  xpindir  4798  dmxpin  4884  xpssres  4977  xpdisj1  5090  xpdisj2  5091  imainrect  5111  xpima1  5112  xpima2m  5113  hashxp  10897  txbas  14426  txrest  14444  metreslem  14548
  Copyright terms: Public domain W3C validator