ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsrex GIF version

Theorem dvdsrex 14027
Description: Existence of the divisibility relation. (Contributed by Jim Kingdon, 28-Jan-2025.)
Assertion
Ref Expression
dvdsrex (𝑅 ∈ SRing → (∥r𝑅) ∈ V)

Proof of Theorem dvdsrex
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2210 . . 3 (𝑅 ∈ SRing → (Base‘𝑅) = (Base‘𝑅))
2 eqidd 2210 . . 3 (𝑅 ∈ SRing → (∥r𝑅) = (∥r𝑅))
3 id 19 . . 3 (𝑅 ∈ SRing → 𝑅 ∈ SRing)
4 eqidd 2210 . . 3 (𝑅 ∈ SRing → (.r𝑅) = (.r𝑅))
51, 2, 3, 4dvdsrvald 14022 . 2 (𝑅 ∈ SRing → (∥r𝑅) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦)})
6 basfn 13057 . . . . 5 Base Fn V
7 elex 2791 . . . . 5 (𝑅 ∈ SRing → 𝑅 ∈ V)
8 funfvex 5620 . . . . . 6 ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V)
98funfni 5399 . . . . 5 ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V)
106, 7, 9sylancr 414 . . . 4 (𝑅 ∈ SRing → (Base‘𝑅) ∈ V)
11 xpexg 4810 . . . 4 (((Base‘𝑅) ∈ V ∧ (Base‘𝑅) ∈ V) → ((Base‘𝑅) × (Base‘𝑅)) ∈ V)
1210, 10, 11syl2anc 411 . . 3 (𝑅 ∈ SRing → ((Base‘𝑅) × (Base‘𝑅)) ∈ V)
13 simprr 531 . . . . . . . 8 (((𝑅 ∈ SRing ∧ 𝑥 ∈ (Base‘𝑅)) ∧ (𝑧 ∈ (Base‘𝑅) ∧ (𝑧(.r𝑅)𝑥) = 𝑦)) → (𝑧(.r𝑅)𝑥) = 𝑦)
14 simpll 527 . . . . . . . . 9 (((𝑅 ∈ SRing ∧ 𝑥 ∈ (Base‘𝑅)) ∧ (𝑧 ∈ (Base‘𝑅) ∧ (𝑧(.r𝑅)𝑥) = 𝑦)) → 𝑅 ∈ SRing)
15 simprl 529 . . . . . . . . 9 (((𝑅 ∈ SRing ∧ 𝑥 ∈ (Base‘𝑅)) ∧ (𝑧 ∈ (Base‘𝑅) ∧ (𝑧(.r𝑅)𝑥) = 𝑦)) → 𝑧 ∈ (Base‘𝑅))
16 simplr 528 . . . . . . . . 9 (((𝑅 ∈ SRing ∧ 𝑥 ∈ (Base‘𝑅)) ∧ (𝑧 ∈ (Base‘𝑅) ∧ (𝑧(.r𝑅)𝑥) = 𝑦)) → 𝑥 ∈ (Base‘𝑅))
17 eqid 2209 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
18 eqid 2209 . . . . . . . . . 10 (.r𝑅) = (.r𝑅)
1917, 18srgcl 13899 . . . . . . . . 9 ((𝑅 ∈ SRing ∧ 𝑧 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑧(.r𝑅)𝑥) ∈ (Base‘𝑅))
2014, 15, 16, 19syl3anc 1252 . . . . . . . 8 (((𝑅 ∈ SRing ∧ 𝑥 ∈ (Base‘𝑅)) ∧ (𝑧 ∈ (Base‘𝑅) ∧ (𝑧(.r𝑅)𝑥) = 𝑦)) → (𝑧(.r𝑅)𝑥) ∈ (Base‘𝑅))
2113, 20eqeltrrd 2287 . . . . . . 7 (((𝑅 ∈ SRing ∧ 𝑥 ∈ (Base‘𝑅)) ∧ (𝑧 ∈ (Base‘𝑅) ∧ (𝑧(.r𝑅)𝑥) = 𝑦)) → 𝑦 ∈ (Base‘𝑅))
2221rexlimdvaa 2629 . . . . . 6 ((𝑅 ∈ SRing ∧ 𝑥 ∈ (Base‘𝑅)) → (∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦𝑦 ∈ (Base‘𝑅)))
2322imdistanda 448 . . . . 5 (𝑅 ∈ SRing → ((𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦) → (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))))
2423ssopab2dv 4346 . . . 4 (𝑅 ∈ SRing → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦)} ⊆ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))})
25 df-xp 4702 . . . 4 ((Base‘𝑅) × (Base‘𝑅)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))}
2624, 25sseqtrrdi 3253 . . 3 (𝑅 ∈ SRing → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦)} ⊆ ((Base‘𝑅) × (Base‘𝑅)))
2712, 26ssexd 4203 . 2 (𝑅 ∈ SRing → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦)} ∈ V)
285, 27eqeltrd 2286 1 (𝑅 ∈ SRing → (∥r𝑅) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1375  wcel 2180  wrex 2489  Vcvv 2779  {copab 4123   × cxp 4694   Fn wfn 5289  cfv 5294  (class class class)co 5974  Basecbs 12998  .rcmulr 13077  SRingcsrg 13892  rcdsr 14015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-addass 8069  ax-i2m1 8072  ax-0lt1 8073  ax-0id 8075  ax-rnegex 8076  ax-pre-ltirr 8079  ax-pre-ltadd 8083
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-iota 5254  df-fun 5296  df-fn 5297  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-pnf 8151  df-mnf 8152  df-ltxr 8154  df-inn 9079  df-2 9137  df-3 9138  df-ndx 13001  df-slot 13002  df-base 13004  df-sets 13005  df-plusg 13089  df-mulr 13090  df-0g 13257  df-mgm 13355  df-sgrp 13401  df-mnd 13416  df-mgp 13850  df-srg 13893  df-dvdsr 14018
This theorem is referenced by:  isunitd  14035
  Copyright terms: Public domain W3C validator