ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fconstmpt GIF version

Theorem fconstmpt 4710
Description: Representation of a constant function using the mapping operation. (Note that 𝑥 cannot appear free in 𝐵.) (Contributed by NM, 12-Oct-1999.) (Revised by Mario Carneiro, 16-Nov-2013.)
Assertion
Ref Expression
fconstmpt (𝐴 × {𝐵}) = (𝑥𝐴𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem fconstmpt
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 velsn 3639 . . . 4 (𝑦 ∈ {𝐵} ↔ 𝑦 = 𝐵)
21anbi2i 457 . . 3 ((𝑥𝐴𝑦 ∈ {𝐵}) ↔ (𝑥𝐴𝑦 = 𝐵))
32opabbii 4100 . 2 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ {𝐵})} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
4 df-xp 4669 . 2 (𝐴 × {𝐵}) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ {𝐵})}
5 df-mpt 4096 . 2 (𝑥𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
63, 4, 53eqtr4i 2227 1 (𝐴 × {𝐵}) = (𝑥𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1364  wcel 2167  {csn 3622  {copab 4093  cmpt 4094   × cxp 4661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-sn 3628  df-opab 4095  df-mpt 4096  df-xp 4669
This theorem is referenced by:  fconst  5453  fcoconst  5733  fmptsn  5751  fconstmpo  6017  ofc12  6158  caofinvl  6160  xpexgALT  6190  inftonninf  10534  fser0const  10627  prod1dc  11751  cnmptc  14518  dvexp  14947  dvexp2  14948  dvmptidcn  14950  dvmptccn  14951  dvmptid  14952  dvmptc  14953  dvmptfsum  14961  dvef  14963  elply2  14971  plyconst  14981  plycolemc  14994  nninfall  15653  nninfsellemeqinf  15660  exmidsbthrlem  15666
  Copyright terms: Public domain W3C validator