| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fconstmpt | GIF version | ||
| Description: Representation of a constant function using the mapping operation. (Note that 𝑥 cannot appear free in 𝐵.) (Contributed by NM, 12-Oct-1999.) (Revised by Mario Carneiro, 16-Nov-2013.) |
| Ref | Expression |
|---|---|
| fconstmpt | ⊢ (𝐴 × {𝐵}) = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | velsn 3663 | . . . 4 ⊢ (𝑦 ∈ {𝐵} ↔ 𝑦 = 𝐵) | |
| 2 | 1 | anbi2i 457 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ {𝐵}) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)) |
| 3 | 2 | opabbii 4130 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ {𝐵})} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
| 4 | df-xp 4702 | . 2 ⊢ (𝐴 × {𝐵}) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ {𝐵})} | |
| 5 | df-mpt 4126 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
| 6 | 3, 4, 5 | 3eqtr4i 2240 | 1 ⊢ (𝐴 × {𝐵}) = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1375 ∈ wcel 2180 {csn 3646 {copab 4123 ↦ cmpt 4124 × cxp 4694 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-v 2781 df-sn 3652 df-opab 4125 df-mpt 4126 df-xp 4702 |
| This theorem is referenced by: fconst 5497 fcoconst 5779 fmptsn 5801 fconstmpo 6070 ofc12 6212 caofinvl 6214 xpexgALT 6248 inftonninf 10631 fser0const 10724 prod1dc 12063 pws0g 13450 psrlinv 14613 psr1clfi 14617 mpl0fi 14631 cnmptc 14921 dvexp 15350 dvexp2 15351 dvmptidcn 15353 dvmptccn 15354 dvmptid 15355 dvmptc 15356 dvmptfsum 15364 dvef 15366 elply2 15374 plyconst 15384 plycolemc 15397 nninfall 16286 nninfsellemeqinf 16293 nninfnfiinf 16300 exmidsbthrlem 16301 |
| Copyright terms: Public domain | W3C validator |