| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fconstmpt | GIF version | ||
| Description: Representation of a constant function using the mapping operation. (Note that 𝑥 cannot appear free in 𝐵.) (Contributed by NM, 12-Oct-1999.) (Revised by Mario Carneiro, 16-Nov-2013.) |
| Ref | Expression |
|---|---|
| fconstmpt | ⊢ (𝐴 × {𝐵}) = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | velsn 3640 | . . . 4 ⊢ (𝑦 ∈ {𝐵} ↔ 𝑦 = 𝐵) | |
| 2 | 1 | anbi2i 457 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ {𝐵}) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)) |
| 3 | 2 | opabbii 4101 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ {𝐵})} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
| 4 | df-xp 4670 | . 2 ⊢ (𝐴 × {𝐵}) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ {𝐵})} | |
| 5 | df-mpt 4097 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
| 6 | 3, 4, 5 | 3eqtr4i 2227 | 1 ⊢ (𝐴 × {𝐵}) = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1364 ∈ wcel 2167 {csn 3623 {copab 4094 ↦ cmpt 4095 × cxp 4662 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-sn 3629 df-opab 4096 df-mpt 4097 df-xp 4670 |
| This theorem is referenced by: fconst 5456 fcoconst 5736 fmptsn 5754 fconstmpo 6021 ofc12 6163 caofinvl 6165 xpexgALT 6199 inftonninf 10553 fser0const 10646 prod1dc 11770 pws0g 13155 psrlinv 14314 psr1clfi 14318 cnmptc 14604 dvexp 15033 dvexp2 15034 dvmptidcn 15036 dvmptccn 15037 dvmptid 15038 dvmptc 15039 dvmptfsum 15047 dvef 15049 elply2 15057 plyconst 15067 plycolemc 15080 nninfall 15742 nninfsellemeqinf 15749 nninfnfiinf 15756 exmidsbthrlem 15757 |
| Copyright terms: Public domain | W3C validator |