| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fconstmpt | GIF version | ||
| Description: Representation of a constant function using the mapping operation. (Note that 𝑥 cannot appear free in 𝐵.) (Contributed by NM, 12-Oct-1999.) (Revised by Mario Carneiro, 16-Nov-2013.) |
| Ref | Expression |
|---|---|
| fconstmpt | ⊢ (𝐴 × {𝐵}) = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | velsn 3651 | . . . 4 ⊢ (𝑦 ∈ {𝐵} ↔ 𝑦 = 𝐵) | |
| 2 | 1 | anbi2i 457 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ {𝐵}) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)) |
| 3 | 2 | opabbii 4115 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ {𝐵})} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
| 4 | df-xp 4685 | . 2 ⊢ (𝐴 × {𝐵}) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ {𝐵})} | |
| 5 | df-mpt 4111 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
| 6 | 3, 4, 5 | 3eqtr4i 2237 | 1 ⊢ (𝐴 × {𝐵}) = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1373 ∈ wcel 2177 {csn 3634 {copab 4108 ↦ cmpt 4109 × cxp 4677 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-sn 3640 df-opab 4110 df-mpt 4111 df-xp 4685 |
| This theorem is referenced by: fconst 5478 fcoconst 5758 fmptsn 5780 fconstmpo 6047 ofc12 6189 caofinvl 6191 xpexgALT 6225 inftonninf 10594 fser0const 10687 prod1dc 11941 pws0g 13327 psrlinv 14490 psr1clfi 14494 mpl0fi 14508 cnmptc 14798 dvexp 15227 dvexp2 15228 dvmptidcn 15230 dvmptccn 15231 dvmptid 15232 dvmptc 15233 dvmptfsum 15241 dvef 15243 elply2 15251 plyconst 15261 plycolemc 15274 nninfall 16020 nninfsellemeqinf 16027 nninfnfiinf 16034 exmidsbthrlem 16035 |
| Copyright terms: Public domain | W3C validator |