ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fconstmpt GIF version

Theorem fconstmpt 4766
Description: Representation of a constant function using the mapping operation. (Note that 𝑥 cannot appear free in 𝐵.) (Contributed by NM, 12-Oct-1999.) (Revised by Mario Carneiro, 16-Nov-2013.)
Assertion
Ref Expression
fconstmpt (𝐴 × {𝐵}) = (𝑥𝐴𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem fconstmpt
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 velsn 3683 . . . 4 (𝑦 ∈ {𝐵} ↔ 𝑦 = 𝐵)
21anbi2i 457 . . 3 ((𝑥𝐴𝑦 ∈ {𝐵}) ↔ (𝑥𝐴𝑦 = 𝐵))
32opabbii 4151 . 2 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ {𝐵})} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
4 df-xp 4725 . 2 (𝐴 × {𝐵}) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ {𝐵})}
5 df-mpt 4147 . 2 (𝑥𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
63, 4, 53eqtr4i 2260 1 (𝐴 × {𝐵}) = (𝑥𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1395  wcel 2200  {csn 3666  {copab 4144  cmpt 4145   × cxp 4717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-sn 3672  df-opab 4146  df-mpt 4147  df-xp 4725
This theorem is referenced by:  fconst  5523  fcoconst  5808  fmptsn  5832  fconstmpo  6105  ofc12  6248  caofinvl  6250  xpexgALT  6284  inftonninf  10672  fser0const  10765  prod1dc  12105  pws0g  13492  psrlinv  14656  psr1clfi  14660  mpl0fi  14674  cnmptc  14964  dvexp  15393  dvexp2  15394  dvmptidcn  15396  dvmptccn  15397  dvmptid  15398  dvmptc  15399  dvmptfsum  15407  dvef  15409  elply2  15417  plyconst  15427  plycolemc  15440  nninfall  16405  nninfsellemeqinf  16412  nninfnfiinf  16419  exmidsbthrlem  16420
  Copyright terms: Public domain W3C validator