ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fconstmpt GIF version

Theorem fconstmpt 4707
Description: Representation of a constant function using the mapping operation. (Note that 𝑥 cannot appear free in 𝐵.) (Contributed by NM, 12-Oct-1999.) (Revised by Mario Carneiro, 16-Nov-2013.)
Assertion
Ref Expression
fconstmpt (𝐴 × {𝐵}) = (𝑥𝐴𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem fconstmpt
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 velsn 3636 . . . 4 (𝑦 ∈ {𝐵} ↔ 𝑦 = 𝐵)
21anbi2i 457 . . 3 ((𝑥𝐴𝑦 ∈ {𝐵}) ↔ (𝑥𝐴𝑦 = 𝐵))
32opabbii 4097 . 2 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ {𝐵})} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
4 df-xp 4666 . 2 (𝐴 × {𝐵}) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ {𝐵})}
5 df-mpt 4093 . 2 (𝑥𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
63, 4, 53eqtr4i 2224 1 (𝐴 × {𝐵}) = (𝑥𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1364  wcel 2164  {csn 3619  {copab 4090  cmpt 4091   × cxp 4658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-sn 3625  df-opab 4092  df-mpt 4093  df-xp 4666
This theorem is referenced by:  fconst  5450  fcoconst  5730  fmptsn  5748  fconstmpo  6014  ofc12  6155  caofinvl  6157  xpexgALT  6187  inftonninf  10516  fser0const  10609  prod1dc  11732  cnmptc  14461  dvexp  14890  dvexp2  14891  dvmptidcn  14893  dvmptccn  14894  dvmptid  14895  dvmptc  14896  dvmptfsum  14904  dvef  14906  elply2  14914  plyconst  14924  plycolemc  14936  nninfall  15569  nninfsellemeqinf  15576  exmidsbthrlem  15582
  Copyright terms: Public domain W3C validator