![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fconstmpt | GIF version |
Description: Representation of a constant function using the mapping operation. (Note that 𝑥 cannot appear free in 𝐵.) (Contributed by NM, 12-Oct-1999.) (Revised by Mario Carneiro, 16-Nov-2013.) |
Ref | Expression |
---|---|
fconstmpt | ⊢ (𝐴 × {𝐵}) = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | velsn 3635 | . . . 4 ⊢ (𝑦 ∈ {𝐵} ↔ 𝑦 = 𝐵) | |
2 | 1 | anbi2i 457 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ {𝐵}) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)) |
3 | 2 | opabbii 4096 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ {𝐵})} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
4 | df-xp 4665 | . 2 ⊢ (𝐴 × {𝐵}) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ {𝐵})} | |
5 | df-mpt 4092 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
6 | 3, 4, 5 | 3eqtr4i 2224 | 1 ⊢ (𝐴 × {𝐵}) = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1364 ∈ wcel 2164 {csn 3618 {copab 4089 ↦ cmpt 4090 × cxp 4657 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-sn 3624 df-opab 4091 df-mpt 4092 df-xp 4665 |
This theorem is referenced by: fconst 5449 fcoconst 5729 fmptsn 5747 fconstmpo 6013 ofc12 6153 caofinvl 6155 xpexgALT 6185 inftonninf 10513 fser0const 10606 prod1dc 11729 cnmptc 14450 dvexp 14860 dvexp2 14861 dvmptidcn 14863 dvmptccn 14864 dvef 14873 elply2 14881 plyconst 14891 nninfall 15499 nninfsellemeqinf 15506 exmidsbthrlem 15512 |
Copyright terms: Public domain | W3C validator |