ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dff1o4 GIF version

Theorem dff1o4 5576
Description: Alternate definition of one-to-one onto function. (Contributed by NM, 25-Mar-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
dff1o4 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹 Fn 𝐴𝐹 Fn 𝐵))

Proof of Theorem dff1o4
StepHypRef Expression
1 dff1o2 5573 . 2 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ Fun 𝐹 ∧ ran 𝐹 = 𝐵))
2 3anass 1006 . 2 ((𝐹 Fn 𝐴 ∧ Fun 𝐹 ∧ ran 𝐹 = 𝐵) ↔ (𝐹 Fn 𝐴 ∧ (Fun 𝐹 ∧ ran 𝐹 = 𝐵)))
3 df-rn 4727 . . . . . 6 ran 𝐹 = dom 𝐹
43eqeq1i 2237 . . . . 5 (ran 𝐹 = 𝐵 ↔ dom 𝐹 = 𝐵)
54anbi2i 457 . . . 4 ((Fun 𝐹 ∧ ran 𝐹 = 𝐵) ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐵))
6 df-fn 5317 . . . 4 (𝐹 Fn 𝐵 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐵))
75, 6bitr4i 187 . . 3 ((Fun 𝐹 ∧ ran 𝐹 = 𝐵) ↔ 𝐹 Fn 𝐵)
87anbi2i 457 . 2 ((𝐹 Fn 𝐴 ∧ (Fun 𝐹 ∧ ran 𝐹 = 𝐵)) ↔ (𝐹 Fn 𝐴𝐹 Fn 𝐵))
91, 2, 83bitri 206 1 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹 Fn 𝐴𝐹 Fn 𝐵))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  w3a 1002   = wceq 1395  ccnv 4715  dom cdm 4716  ran crn 4717  Fun wfun 5308   Fn wfn 5309  1-1-ontowf1o 5313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-in 3203  df-ss 3210  df-rn 4727  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321
This theorem is referenced by:  f1ocnv  5581  f1oun  5588  f1o00  5604  f1oi  5607  f1osn  5609  f1ompt  5779  f1ofveu  5982  f1ocnvd  6198  f1od2  6371  mapsnf1o2  6833  sbthlemi9  7120  xnn0nnen  10646  nninfctlemfo  12547  mhmf1o  13489  grpinvf1o  13589  ghmf1o  13798  rhmf1o  14117  hmeof1o2  14967
  Copyright terms: Public domain W3C validator