ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fo1stresm GIF version

Theorem fo1stresm 6228
Description: Onto mapping of a restriction of the 1st (first member of an ordered pair) function. (Contributed by Jim Kingdon, 24-Jan-2019.)
Assertion
Ref Expression
fo1stresm (∃𝑦 𝑦𝐵 → (1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)–onto𝐴)
Distinct variable group:   𝑦,𝐵
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem fo1stresm
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2259 . . 3 (𝑣 = 𝑦 → (𝑣𝐵𝑦𝐵))
21cbvexv 1933 . 2 (∃𝑣 𝑣𝐵 ↔ ∃𝑦 𝑦𝐵)
3 opelxp 4694 . . . . . . . . . 10 (⟨𝑢, 𝑣⟩ ∈ (𝐴 × 𝐵) ↔ (𝑢𝐴𝑣𝐵))
4 fvres 5585 . . . . . . . . . . . 12 (⟨𝑢, 𝑣⟩ ∈ (𝐴 × 𝐵) → ((1st ↾ (𝐴 × 𝐵))‘⟨𝑢, 𝑣⟩) = (1st ‘⟨𝑢, 𝑣⟩))
5 vex 2766 . . . . . . . . . . . . 13 𝑢 ∈ V
6 vex 2766 . . . . . . . . . . . . 13 𝑣 ∈ V
75, 6op1st 6213 . . . . . . . . . . . 12 (1st ‘⟨𝑢, 𝑣⟩) = 𝑢
84, 7eqtr2di 2246 . . . . . . . . . . 11 (⟨𝑢, 𝑣⟩ ∈ (𝐴 × 𝐵) → 𝑢 = ((1st ↾ (𝐴 × 𝐵))‘⟨𝑢, 𝑣⟩))
9 f1stres 6226 . . . . . . . . . . . . 13 (1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐴
10 ffn 5410 . . . . . . . . . . . . 13 ((1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐴 → (1st ↾ (𝐴 × 𝐵)) Fn (𝐴 × 𝐵))
119, 10ax-mp 5 . . . . . . . . . . . 12 (1st ↾ (𝐴 × 𝐵)) Fn (𝐴 × 𝐵)
12 fnfvelrn 5697 . . . . . . . . . . . 12 (((1st ↾ (𝐴 × 𝐵)) Fn (𝐴 × 𝐵) ∧ ⟨𝑢, 𝑣⟩ ∈ (𝐴 × 𝐵)) → ((1st ↾ (𝐴 × 𝐵))‘⟨𝑢, 𝑣⟩) ∈ ran (1st ↾ (𝐴 × 𝐵)))
1311, 12mpan 424 . . . . . . . . . . 11 (⟨𝑢, 𝑣⟩ ∈ (𝐴 × 𝐵) → ((1st ↾ (𝐴 × 𝐵))‘⟨𝑢, 𝑣⟩) ∈ ran (1st ↾ (𝐴 × 𝐵)))
148, 13eqeltrd 2273 . . . . . . . . . 10 (⟨𝑢, 𝑣⟩ ∈ (𝐴 × 𝐵) → 𝑢 ∈ ran (1st ↾ (𝐴 × 𝐵)))
153, 14sylbir 135 . . . . . . . . 9 ((𝑢𝐴𝑣𝐵) → 𝑢 ∈ ran (1st ↾ (𝐴 × 𝐵)))
1615expcom 116 . . . . . . . 8 (𝑣𝐵 → (𝑢𝐴𝑢 ∈ ran (1st ↾ (𝐴 × 𝐵))))
1716exlimiv 1612 . . . . . . 7 (∃𝑣 𝑣𝐵 → (𝑢𝐴𝑢 ∈ ran (1st ↾ (𝐴 × 𝐵))))
1817ssrdv 3190 . . . . . 6 (∃𝑣 𝑣𝐵𝐴 ⊆ ran (1st ↾ (𝐴 × 𝐵)))
19 frn 5419 . . . . . . 7 ((1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐴 → ran (1st ↾ (𝐴 × 𝐵)) ⊆ 𝐴)
209, 19ax-mp 5 . . . . . 6 ran (1st ↾ (𝐴 × 𝐵)) ⊆ 𝐴
2118, 20jctil 312 . . . . 5 (∃𝑣 𝑣𝐵 → (ran (1st ↾ (𝐴 × 𝐵)) ⊆ 𝐴𝐴 ⊆ ran (1st ↾ (𝐴 × 𝐵))))
22 eqss 3199 . . . . 5 (ran (1st ↾ (𝐴 × 𝐵)) = 𝐴 ↔ (ran (1st ↾ (𝐴 × 𝐵)) ⊆ 𝐴𝐴 ⊆ ran (1st ↾ (𝐴 × 𝐵))))
2321, 22sylibr 134 . . . 4 (∃𝑣 𝑣𝐵 → ran (1st ↾ (𝐴 × 𝐵)) = 𝐴)
2423, 9jctil 312 . . 3 (∃𝑣 𝑣𝐵 → ((1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐴 ∧ ran (1st ↾ (𝐴 × 𝐵)) = 𝐴))
25 dffo2 5487 . . 3 ((1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)–onto𝐴 ↔ ((1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐴 ∧ ran (1st ↾ (𝐴 × 𝐵)) = 𝐴))
2624, 25sylibr 134 . 2 (∃𝑣 𝑣𝐵 → (1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)–onto𝐴)
272, 26sylbir 135 1 (∃𝑦 𝑦𝐵 → (1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)–onto𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wex 1506  wcel 2167  wss 3157  cop 3626   × cxp 4662  ran crn 4665  cres 4666   Fn wfn 5254  wf 5255  ontowfo 5257  cfv 5259  1st c1st 6205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fo 5265  df-fv 5267  df-1st 6207
This theorem is referenced by:  1stconst  6288
  Copyright terms: Public domain W3C validator