ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fo1stresm GIF version

Theorem fo1stresm 6140
Description: Onto mapping of a restriction of the 1st (first member of an ordered pair) function. (Contributed by Jim Kingdon, 24-Jan-2019.)
Assertion
Ref Expression
fo1stresm (∃𝑦 𝑦𝐵 → (1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)–onto𝐴)
Distinct variable group:   𝑦,𝐵
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem fo1stresm
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2233 . . 3 (𝑣 = 𝑦 → (𝑣𝐵𝑦𝐵))
21cbvexv 1911 . 2 (∃𝑣 𝑣𝐵 ↔ ∃𝑦 𝑦𝐵)
3 opelxp 4641 . . . . . . . . . 10 (⟨𝑢, 𝑣⟩ ∈ (𝐴 × 𝐵) ↔ (𝑢𝐴𝑣𝐵))
4 fvres 5520 . . . . . . . . . . . 12 (⟨𝑢, 𝑣⟩ ∈ (𝐴 × 𝐵) → ((1st ↾ (𝐴 × 𝐵))‘⟨𝑢, 𝑣⟩) = (1st ‘⟨𝑢, 𝑣⟩))
5 vex 2733 . . . . . . . . . . . . 13 𝑢 ∈ V
6 vex 2733 . . . . . . . . . . . . 13 𝑣 ∈ V
75, 6op1st 6125 . . . . . . . . . . . 12 (1st ‘⟨𝑢, 𝑣⟩) = 𝑢
84, 7eqtr2di 2220 . . . . . . . . . . 11 (⟨𝑢, 𝑣⟩ ∈ (𝐴 × 𝐵) → 𝑢 = ((1st ↾ (𝐴 × 𝐵))‘⟨𝑢, 𝑣⟩))
9 f1stres 6138 . . . . . . . . . . . . 13 (1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐴
10 ffn 5347 . . . . . . . . . . . . 13 ((1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐴 → (1st ↾ (𝐴 × 𝐵)) Fn (𝐴 × 𝐵))
119, 10ax-mp 5 . . . . . . . . . . . 12 (1st ↾ (𝐴 × 𝐵)) Fn (𝐴 × 𝐵)
12 fnfvelrn 5628 . . . . . . . . . . . 12 (((1st ↾ (𝐴 × 𝐵)) Fn (𝐴 × 𝐵) ∧ ⟨𝑢, 𝑣⟩ ∈ (𝐴 × 𝐵)) → ((1st ↾ (𝐴 × 𝐵))‘⟨𝑢, 𝑣⟩) ∈ ran (1st ↾ (𝐴 × 𝐵)))
1311, 12mpan 422 . . . . . . . . . . 11 (⟨𝑢, 𝑣⟩ ∈ (𝐴 × 𝐵) → ((1st ↾ (𝐴 × 𝐵))‘⟨𝑢, 𝑣⟩) ∈ ran (1st ↾ (𝐴 × 𝐵)))
148, 13eqeltrd 2247 . . . . . . . . . 10 (⟨𝑢, 𝑣⟩ ∈ (𝐴 × 𝐵) → 𝑢 ∈ ran (1st ↾ (𝐴 × 𝐵)))
153, 14sylbir 134 . . . . . . . . 9 ((𝑢𝐴𝑣𝐵) → 𝑢 ∈ ran (1st ↾ (𝐴 × 𝐵)))
1615expcom 115 . . . . . . . 8 (𝑣𝐵 → (𝑢𝐴𝑢 ∈ ran (1st ↾ (𝐴 × 𝐵))))
1716exlimiv 1591 . . . . . . 7 (∃𝑣 𝑣𝐵 → (𝑢𝐴𝑢 ∈ ran (1st ↾ (𝐴 × 𝐵))))
1817ssrdv 3153 . . . . . 6 (∃𝑣 𝑣𝐵𝐴 ⊆ ran (1st ↾ (𝐴 × 𝐵)))
19 frn 5356 . . . . . . 7 ((1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐴 → ran (1st ↾ (𝐴 × 𝐵)) ⊆ 𝐴)
209, 19ax-mp 5 . . . . . 6 ran (1st ↾ (𝐴 × 𝐵)) ⊆ 𝐴
2118, 20jctil 310 . . . . 5 (∃𝑣 𝑣𝐵 → (ran (1st ↾ (𝐴 × 𝐵)) ⊆ 𝐴𝐴 ⊆ ran (1st ↾ (𝐴 × 𝐵))))
22 eqss 3162 . . . . 5 (ran (1st ↾ (𝐴 × 𝐵)) = 𝐴 ↔ (ran (1st ↾ (𝐴 × 𝐵)) ⊆ 𝐴𝐴 ⊆ ran (1st ↾ (𝐴 × 𝐵))))
2321, 22sylibr 133 . . . 4 (∃𝑣 𝑣𝐵 → ran (1st ↾ (𝐴 × 𝐵)) = 𝐴)
2423, 9jctil 310 . . 3 (∃𝑣 𝑣𝐵 → ((1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐴 ∧ ran (1st ↾ (𝐴 × 𝐵)) = 𝐴))
25 dffo2 5424 . . 3 ((1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)–onto𝐴 ↔ ((1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐴 ∧ ran (1st ↾ (𝐴 × 𝐵)) = 𝐴))
2624, 25sylibr 133 . 2 (∃𝑣 𝑣𝐵 → (1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)–onto𝐴)
272, 26sylbir 134 1 (∃𝑦 𝑦𝐵 → (1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)–onto𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wex 1485  wcel 2141  wss 3121  cop 3586   × cxp 4609  ran crn 4612  cres 4613   Fn wfn 5193  wf 5194  ontowfo 5196  cfv 5198  1st c1st 6117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fo 5204  df-fv 5206  df-1st 6119
This theorem is referenced by:  1stconst  6200
  Copyright terms: Public domain W3C validator