ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fo1stresm GIF version

Theorem fo1stresm 6152
Description: Onto mapping of a restriction of the 1st (first member of an ordered pair) function. (Contributed by Jim Kingdon, 24-Jan-2019.)
Assertion
Ref Expression
fo1stresm (∃𝑦 𝑦𝐵 → (1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)–onto𝐴)
Distinct variable group:   𝑦,𝐵
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem fo1stresm
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2238 . . 3 (𝑣 = 𝑦 → (𝑣𝐵𝑦𝐵))
21cbvexv 1916 . 2 (∃𝑣 𝑣𝐵 ↔ ∃𝑦 𝑦𝐵)
3 opelxp 4650 . . . . . . . . . 10 (⟨𝑢, 𝑣⟩ ∈ (𝐴 × 𝐵) ↔ (𝑢𝐴𝑣𝐵))
4 fvres 5531 . . . . . . . . . . . 12 (⟨𝑢, 𝑣⟩ ∈ (𝐴 × 𝐵) → ((1st ↾ (𝐴 × 𝐵))‘⟨𝑢, 𝑣⟩) = (1st ‘⟨𝑢, 𝑣⟩))
5 vex 2738 . . . . . . . . . . . . 13 𝑢 ∈ V
6 vex 2738 . . . . . . . . . . . . 13 𝑣 ∈ V
75, 6op1st 6137 . . . . . . . . . . . 12 (1st ‘⟨𝑢, 𝑣⟩) = 𝑢
84, 7eqtr2di 2225 . . . . . . . . . . 11 (⟨𝑢, 𝑣⟩ ∈ (𝐴 × 𝐵) → 𝑢 = ((1st ↾ (𝐴 × 𝐵))‘⟨𝑢, 𝑣⟩))
9 f1stres 6150 . . . . . . . . . . . . 13 (1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐴
10 ffn 5357 . . . . . . . . . . . . 13 ((1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐴 → (1st ↾ (𝐴 × 𝐵)) Fn (𝐴 × 𝐵))
119, 10ax-mp 5 . . . . . . . . . . . 12 (1st ↾ (𝐴 × 𝐵)) Fn (𝐴 × 𝐵)
12 fnfvelrn 5640 . . . . . . . . . . . 12 (((1st ↾ (𝐴 × 𝐵)) Fn (𝐴 × 𝐵) ∧ ⟨𝑢, 𝑣⟩ ∈ (𝐴 × 𝐵)) → ((1st ↾ (𝐴 × 𝐵))‘⟨𝑢, 𝑣⟩) ∈ ran (1st ↾ (𝐴 × 𝐵)))
1311, 12mpan 424 . . . . . . . . . . 11 (⟨𝑢, 𝑣⟩ ∈ (𝐴 × 𝐵) → ((1st ↾ (𝐴 × 𝐵))‘⟨𝑢, 𝑣⟩) ∈ ran (1st ↾ (𝐴 × 𝐵)))
148, 13eqeltrd 2252 . . . . . . . . . 10 (⟨𝑢, 𝑣⟩ ∈ (𝐴 × 𝐵) → 𝑢 ∈ ran (1st ↾ (𝐴 × 𝐵)))
153, 14sylbir 135 . . . . . . . . 9 ((𝑢𝐴𝑣𝐵) → 𝑢 ∈ ran (1st ↾ (𝐴 × 𝐵)))
1615expcom 116 . . . . . . . 8 (𝑣𝐵 → (𝑢𝐴𝑢 ∈ ran (1st ↾ (𝐴 × 𝐵))))
1716exlimiv 1596 . . . . . . 7 (∃𝑣 𝑣𝐵 → (𝑢𝐴𝑢 ∈ ran (1st ↾ (𝐴 × 𝐵))))
1817ssrdv 3159 . . . . . 6 (∃𝑣 𝑣𝐵𝐴 ⊆ ran (1st ↾ (𝐴 × 𝐵)))
19 frn 5366 . . . . . . 7 ((1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐴 → ran (1st ↾ (𝐴 × 𝐵)) ⊆ 𝐴)
209, 19ax-mp 5 . . . . . 6 ran (1st ↾ (𝐴 × 𝐵)) ⊆ 𝐴
2118, 20jctil 312 . . . . 5 (∃𝑣 𝑣𝐵 → (ran (1st ↾ (𝐴 × 𝐵)) ⊆ 𝐴𝐴 ⊆ ran (1st ↾ (𝐴 × 𝐵))))
22 eqss 3168 . . . . 5 (ran (1st ↾ (𝐴 × 𝐵)) = 𝐴 ↔ (ran (1st ↾ (𝐴 × 𝐵)) ⊆ 𝐴𝐴 ⊆ ran (1st ↾ (𝐴 × 𝐵))))
2321, 22sylibr 134 . . . 4 (∃𝑣 𝑣𝐵 → ran (1st ↾ (𝐴 × 𝐵)) = 𝐴)
2423, 9jctil 312 . . 3 (∃𝑣 𝑣𝐵 → ((1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐴 ∧ ran (1st ↾ (𝐴 × 𝐵)) = 𝐴))
25 dffo2 5434 . . 3 ((1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)–onto𝐴 ↔ ((1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐴 ∧ ran (1st ↾ (𝐴 × 𝐵)) = 𝐴))
2624, 25sylibr 134 . 2 (∃𝑣 𝑣𝐵 → (1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)–onto𝐴)
272, 26sylbir 135 1 (∃𝑦 𝑦𝐵 → (1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)–onto𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wex 1490  wcel 2146  wss 3127  cop 3592   × cxp 4618  ran crn 4621  cres 4622   Fn wfn 5203  wf 5204  ontowfo 5206  cfv 5208  1st c1st 6129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-fo 5214  df-fv 5216  df-1st 6131
This theorem is referenced by:  1stconst  6212
  Copyright terms: Public domain W3C validator