ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fo1stresm GIF version

Theorem fo1stresm 6270
Description: Onto mapping of a restriction of the 1st (first member of an ordered pair) function. (Contributed by Jim Kingdon, 24-Jan-2019.)
Assertion
Ref Expression
fo1stresm (∃𝑦 𝑦𝐵 → (1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)–onto𝐴)
Distinct variable group:   𝑦,𝐵
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem fo1stresm
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2270 . . 3 (𝑣 = 𝑦 → (𝑣𝐵𝑦𝐵))
21cbvexv 1943 . 2 (∃𝑣 𝑣𝐵 ↔ ∃𝑦 𝑦𝐵)
3 opelxp 4723 . . . . . . . . . 10 (⟨𝑢, 𝑣⟩ ∈ (𝐴 × 𝐵) ↔ (𝑢𝐴𝑣𝐵))
4 fvres 5623 . . . . . . . . . . . 12 (⟨𝑢, 𝑣⟩ ∈ (𝐴 × 𝐵) → ((1st ↾ (𝐴 × 𝐵))‘⟨𝑢, 𝑣⟩) = (1st ‘⟨𝑢, 𝑣⟩))
5 vex 2779 . . . . . . . . . . . . 13 𝑢 ∈ V
6 vex 2779 . . . . . . . . . . . . 13 𝑣 ∈ V
75, 6op1st 6255 . . . . . . . . . . . 12 (1st ‘⟨𝑢, 𝑣⟩) = 𝑢
84, 7eqtr2di 2257 . . . . . . . . . . 11 (⟨𝑢, 𝑣⟩ ∈ (𝐴 × 𝐵) → 𝑢 = ((1st ↾ (𝐴 × 𝐵))‘⟨𝑢, 𝑣⟩))
9 f1stres 6268 . . . . . . . . . . . . 13 (1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐴
10 ffn 5445 . . . . . . . . . . . . 13 ((1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐴 → (1st ↾ (𝐴 × 𝐵)) Fn (𝐴 × 𝐵))
119, 10ax-mp 5 . . . . . . . . . . . 12 (1st ↾ (𝐴 × 𝐵)) Fn (𝐴 × 𝐵)
12 fnfvelrn 5735 . . . . . . . . . . . 12 (((1st ↾ (𝐴 × 𝐵)) Fn (𝐴 × 𝐵) ∧ ⟨𝑢, 𝑣⟩ ∈ (𝐴 × 𝐵)) → ((1st ↾ (𝐴 × 𝐵))‘⟨𝑢, 𝑣⟩) ∈ ran (1st ↾ (𝐴 × 𝐵)))
1311, 12mpan 424 . . . . . . . . . . 11 (⟨𝑢, 𝑣⟩ ∈ (𝐴 × 𝐵) → ((1st ↾ (𝐴 × 𝐵))‘⟨𝑢, 𝑣⟩) ∈ ran (1st ↾ (𝐴 × 𝐵)))
148, 13eqeltrd 2284 . . . . . . . . . 10 (⟨𝑢, 𝑣⟩ ∈ (𝐴 × 𝐵) → 𝑢 ∈ ran (1st ↾ (𝐴 × 𝐵)))
153, 14sylbir 135 . . . . . . . . 9 ((𝑢𝐴𝑣𝐵) → 𝑢 ∈ ran (1st ↾ (𝐴 × 𝐵)))
1615expcom 116 . . . . . . . 8 (𝑣𝐵 → (𝑢𝐴𝑢 ∈ ran (1st ↾ (𝐴 × 𝐵))))
1716exlimiv 1622 . . . . . . 7 (∃𝑣 𝑣𝐵 → (𝑢𝐴𝑢 ∈ ran (1st ↾ (𝐴 × 𝐵))))
1817ssrdv 3207 . . . . . 6 (∃𝑣 𝑣𝐵𝐴 ⊆ ran (1st ↾ (𝐴 × 𝐵)))
19 frn 5454 . . . . . . 7 ((1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐴 → ran (1st ↾ (𝐴 × 𝐵)) ⊆ 𝐴)
209, 19ax-mp 5 . . . . . 6 ran (1st ↾ (𝐴 × 𝐵)) ⊆ 𝐴
2118, 20jctil 312 . . . . 5 (∃𝑣 𝑣𝐵 → (ran (1st ↾ (𝐴 × 𝐵)) ⊆ 𝐴𝐴 ⊆ ran (1st ↾ (𝐴 × 𝐵))))
22 eqss 3216 . . . . 5 (ran (1st ↾ (𝐴 × 𝐵)) = 𝐴 ↔ (ran (1st ↾ (𝐴 × 𝐵)) ⊆ 𝐴𝐴 ⊆ ran (1st ↾ (𝐴 × 𝐵))))
2321, 22sylibr 134 . . . 4 (∃𝑣 𝑣𝐵 → ran (1st ↾ (𝐴 × 𝐵)) = 𝐴)
2423, 9jctil 312 . . 3 (∃𝑣 𝑣𝐵 → ((1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐴 ∧ ran (1st ↾ (𝐴 × 𝐵)) = 𝐴))
25 dffo2 5524 . . 3 ((1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)–onto𝐴 ↔ ((1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐴 ∧ ran (1st ↾ (𝐴 × 𝐵)) = 𝐴))
2624, 25sylibr 134 . 2 (∃𝑣 𝑣𝐵 → (1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)–onto𝐴)
272, 26sylbir 135 1 (∃𝑦 𝑦𝐵 → (1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)–onto𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wex 1516  wcel 2178  wss 3174  cop 3646   × cxp 4691  ran crn 4694  cres 4695   Fn wfn 5285  wf 5286  ontowfo 5288  cfv 5290  1st c1st 6247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fo 5296  df-fv 5298  df-1st 6249
This theorem is referenced by:  1stconst  6330
  Copyright terms: Public domain W3C validator