ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fo2ndresm GIF version

Theorem fo2ndresm 6122
Description: Onto mapping of a restriction of the 2nd (second member of an ordered pair) function. (Contributed by Jim Kingdon, 24-Jan-2019.)
Assertion
Ref Expression
fo2ndresm (∃𝑥 𝑥𝐴 → (2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)–onto𝐵)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem fo2ndresm
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2227 . . 3 (𝑢 = 𝑥 → (𝑢𝐴𝑥𝐴))
21cbvexv 1905 . 2 (∃𝑢 𝑢𝐴 ↔ ∃𝑥 𝑥𝐴)
3 opelxp 4628 . . . . . . . . . 10 (⟨𝑢, 𝑣⟩ ∈ (𝐴 × 𝐵) ↔ (𝑢𝐴𝑣𝐵))
4 fvres 5504 . . . . . . . . . . . 12 (⟨𝑢, 𝑣⟩ ∈ (𝐴 × 𝐵) → ((2nd ↾ (𝐴 × 𝐵))‘⟨𝑢, 𝑣⟩) = (2nd ‘⟨𝑢, 𝑣⟩))
5 vex 2724 . . . . . . . . . . . . 13 𝑢 ∈ V
6 vex 2724 . . . . . . . . . . . . 13 𝑣 ∈ V
75, 6op2nd 6107 . . . . . . . . . . . 12 (2nd ‘⟨𝑢, 𝑣⟩) = 𝑣
84, 7eqtr2di 2214 . . . . . . . . . . 11 (⟨𝑢, 𝑣⟩ ∈ (𝐴 × 𝐵) → 𝑣 = ((2nd ↾ (𝐴 × 𝐵))‘⟨𝑢, 𝑣⟩))
9 f2ndres 6120 . . . . . . . . . . . . 13 (2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵
10 ffn 5331 . . . . . . . . . . . . 13 ((2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵 → (2nd ↾ (𝐴 × 𝐵)) Fn (𝐴 × 𝐵))
119, 10ax-mp 5 . . . . . . . . . . . 12 (2nd ↾ (𝐴 × 𝐵)) Fn (𝐴 × 𝐵)
12 fnfvelrn 5611 . . . . . . . . . . . 12 (((2nd ↾ (𝐴 × 𝐵)) Fn (𝐴 × 𝐵) ∧ ⟨𝑢, 𝑣⟩ ∈ (𝐴 × 𝐵)) → ((2nd ↾ (𝐴 × 𝐵))‘⟨𝑢, 𝑣⟩) ∈ ran (2nd ↾ (𝐴 × 𝐵)))
1311, 12mpan 421 . . . . . . . . . . 11 (⟨𝑢, 𝑣⟩ ∈ (𝐴 × 𝐵) → ((2nd ↾ (𝐴 × 𝐵))‘⟨𝑢, 𝑣⟩) ∈ ran (2nd ↾ (𝐴 × 𝐵)))
148, 13eqeltrd 2241 . . . . . . . . . 10 (⟨𝑢, 𝑣⟩ ∈ (𝐴 × 𝐵) → 𝑣 ∈ ran (2nd ↾ (𝐴 × 𝐵)))
153, 14sylbir 134 . . . . . . . . 9 ((𝑢𝐴𝑣𝐵) → 𝑣 ∈ ran (2nd ↾ (𝐴 × 𝐵)))
1615ex 114 . . . . . . . 8 (𝑢𝐴 → (𝑣𝐵𝑣 ∈ ran (2nd ↾ (𝐴 × 𝐵))))
1716exlimiv 1585 . . . . . . 7 (∃𝑢 𝑢𝐴 → (𝑣𝐵𝑣 ∈ ran (2nd ↾ (𝐴 × 𝐵))))
1817ssrdv 3143 . . . . . 6 (∃𝑢 𝑢𝐴𝐵 ⊆ ran (2nd ↾ (𝐴 × 𝐵)))
19 frn 5340 . . . . . . 7 ((2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵 → ran (2nd ↾ (𝐴 × 𝐵)) ⊆ 𝐵)
209, 19ax-mp 5 . . . . . 6 ran (2nd ↾ (𝐴 × 𝐵)) ⊆ 𝐵
2118, 20jctil 310 . . . . 5 (∃𝑢 𝑢𝐴 → (ran (2nd ↾ (𝐴 × 𝐵)) ⊆ 𝐵𝐵 ⊆ ran (2nd ↾ (𝐴 × 𝐵))))
22 eqss 3152 . . . . 5 (ran (2nd ↾ (𝐴 × 𝐵)) = 𝐵 ↔ (ran (2nd ↾ (𝐴 × 𝐵)) ⊆ 𝐵𝐵 ⊆ ran (2nd ↾ (𝐴 × 𝐵))))
2321, 22sylibr 133 . . . 4 (∃𝑢 𝑢𝐴 → ran (2nd ↾ (𝐴 × 𝐵)) = 𝐵)
2423, 9jctil 310 . . 3 (∃𝑢 𝑢𝐴 → ((2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵 ∧ ran (2nd ↾ (𝐴 × 𝐵)) = 𝐵))
25 dffo2 5408 . . 3 ((2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)–onto𝐵 ↔ ((2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵 ∧ ran (2nd ↾ (𝐴 × 𝐵)) = 𝐵))
2624, 25sylibr 133 . 2 (∃𝑢 𝑢𝐴 → (2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)–onto𝐵)
272, 26sylbir 134 1 (∃𝑥 𝑥𝐴 → (2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)–onto𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1342  wex 1479  wcel 2135  wss 3111  cop 3573   × cxp 4596  ran crn 4599  cres 4600   Fn wfn 5177  wf 5178  ontowfo 5180  cfv 5182  2nd c2nd 6099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-pow 4147  ax-pr 4181  ax-un 4405
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ral 2447  df-rex 2448  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-un 3115  df-in 3117  df-ss 3124  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-id 4265  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-fo 5188  df-fv 5190  df-2nd 6101
This theorem is referenced by:  2ndconst  6181
  Copyright terms: Public domain W3C validator