ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fo2ndresm GIF version

Theorem fo2ndresm 6215
Description: Onto mapping of a restriction of the 2nd (second member of an ordered pair) function. (Contributed by Jim Kingdon, 24-Jan-2019.)
Assertion
Ref Expression
fo2ndresm (∃𝑥 𝑥𝐴 → (2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)–onto𝐵)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem fo2ndresm
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2256 . . 3 (𝑢 = 𝑥 → (𝑢𝐴𝑥𝐴))
21cbvexv 1930 . 2 (∃𝑢 𝑢𝐴 ↔ ∃𝑥 𝑥𝐴)
3 opelxp 4689 . . . . . . . . . 10 (⟨𝑢, 𝑣⟩ ∈ (𝐴 × 𝐵) ↔ (𝑢𝐴𝑣𝐵))
4 fvres 5578 . . . . . . . . . . . 12 (⟨𝑢, 𝑣⟩ ∈ (𝐴 × 𝐵) → ((2nd ↾ (𝐴 × 𝐵))‘⟨𝑢, 𝑣⟩) = (2nd ‘⟨𝑢, 𝑣⟩))
5 vex 2763 . . . . . . . . . . . . 13 𝑢 ∈ V
6 vex 2763 . . . . . . . . . . . . 13 𝑣 ∈ V
75, 6op2nd 6200 . . . . . . . . . . . 12 (2nd ‘⟨𝑢, 𝑣⟩) = 𝑣
84, 7eqtr2di 2243 . . . . . . . . . . 11 (⟨𝑢, 𝑣⟩ ∈ (𝐴 × 𝐵) → 𝑣 = ((2nd ↾ (𝐴 × 𝐵))‘⟨𝑢, 𝑣⟩))
9 f2ndres 6213 . . . . . . . . . . . . 13 (2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵
10 ffn 5403 . . . . . . . . . . . . 13 ((2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵 → (2nd ↾ (𝐴 × 𝐵)) Fn (𝐴 × 𝐵))
119, 10ax-mp 5 . . . . . . . . . . . 12 (2nd ↾ (𝐴 × 𝐵)) Fn (𝐴 × 𝐵)
12 fnfvelrn 5690 . . . . . . . . . . . 12 (((2nd ↾ (𝐴 × 𝐵)) Fn (𝐴 × 𝐵) ∧ ⟨𝑢, 𝑣⟩ ∈ (𝐴 × 𝐵)) → ((2nd ↾ (𝐴 × 𝐵))‘⟨𝑢, 𝑣⟩) ∈ ran (2nd ↾ (𝐴 × 𝐵)))
1311, 12mpan 424 . . . . . . . . . . 11 (⟨𝑢, 𝑣⟩ ∈ (𝐴 × 𝐵) → ((2nd ↾ (𝐴 × 𝐵))‘⟨𝑢, 𝑣⟩) ∈ ran (2nd ↾ (𝐴 × 𝐵)))
148, 13eqeltrd 2270 . . . . . . . . . 10 (⟨𝑢, 𝑣⟩ ∈ (𝐴 × 𝐵) → 𝑣 ∈ ran (2nd ↾ (𝐴 × 𝐵)))
153, 14sylbir 135 . . . . . . . . 9 ((𝑢𝐴𝑣𝐵) → 𝑣 ∈ ran (2nd ↾ (𝐴 × 𝐵)))
1615ex 115 . . . . . . . 8 (𝑢𝐴 → (𝑣𝐵𝑣 ∈ ran (2nd ↾ (𝐴 × 𝐵))))
1716exlimiv 1609 . . . . . . 7 (∃𝑢 𝑢𝐴 → (𝑣𝐵𝑣 ∈ ran (2nd ↾ (𝐴 × 𝐵))))
1817ssrdv 3185 . . . . . 6 (∃𝑢 𝑢𝐴𝐵 ⊆ ran (2nd ↾ (𝐴 × 𝐵)))
19 frn 5412 . . . . . . 7 ((2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵 → ran (2nd ↾ (𝐴 × 𝐵)) ⊆ 𝐵)
209, 19ax-mp 5 . . . . . 6 ran (2nd ↾ (𝐴 × 𝐵)) ⊆ 𝐵
2118, 20jctil 312 . . . . 5 (∃𝑢 𝑢𝐴 → (ran (2nd ↾ (𝐴 × 𝐵)) ⊆ 𝐵𝐵 ⊆ ran (2nd ↾ (𝐴 × 𝐵))))
22 eqss 3194 . . . . 5 (ran (2nd ↾ (𝐴 × 𝐵)) = 𝐵 ↔ (ran (2nd ↾ (𝐴 × 𝐵)) ⊆ 𝐵𝐵 ⊆ ran (2nd ↾ (𝐴 × 𝐵))))
2321, 22sylibr 134 . . . 4 (∃𝑢 𝑢𝐴 → ran (2nd ↾ (𝐴 × 𝐵)) = 𝐵)
2423, 9jctil 312 . . 3 (∃𝑢 𝑢𝐴 → ((2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵 ∧ ran (2nd ↾ (𝐴 × 𝐵)) = 𝐵))
25 dffo2 5480 . . 3 ((2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)–onto𝐵 ↔ ((2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵 ∧ ran (2nd ↾ (𝐴 × 𝐵)) = 𝐵))
2624, 25sylibr 134 . 2 (∃𝑢 𝑢𝐴 → (2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)–onto𝐵)
272, 26sylbir 135 1 (∃𝑥 𝑥𝐴 → (2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)–onto𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wex 1503  wcel 2164  wss 3153  cop 3621   × cxp 4657  ran crn 4660  cres 4661   Fn wfn 5249  wf 5250  ontowfo 5252  cfv 5254  2nd c2nd 6192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fo 5260  df-fv 5262  df-2nd 6194
This theorem is referenced by:  2ndconst  6275
  Copyright terms: Public domain W3C validator