ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fo2ndresm GIF version

Theorem fo2ndresm 6248
Description: Onto mapping of a restriction of the 2nd (second member of an ordered pair) function. (Contributed by Jim Kingdon, 24-Jan-2019.)
Assertion
Ref Expression
fo2ndresm (∃𝑥 𝑥𝐴 → (2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)–onto𝐵)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem fo2ndresm
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2268 . . 3 (𝑢 = 𝑥 → (𝑢𝐴𝑥𝐴))
21cbvexv 1942 . 2 (∃𝑢 𝑢𝐴 ↔ ∃𝑥 𝑥𝐴)
3 opelxp 4705 . . . . . . . . . 10 (⟨𝑢, 𝑣⟩ ∈ (𝐴 × 𝐵) ↔ (𝑢𝐴𝑣𝐵))
4 fvres 5600 . . . . . . . . . . . 12 (⟨𝑢, 𝑣⟩ ∈ (𝐴 × 𝐵) → ((2nd ↾ (𝐴 × 𝐵))‘⟨𝑢, 𝑣⟩) = (2nd ‘⟨𝑢, 𝑣⟩))
5 vex 2775 . . . . . . . . . . . . 13 𝑢 ∈ V
6 vex 2775 . . . . . . . . . . . . 13 𝑣 ∈ V
75, 6op2nd 6233 . . . . . . . . . . . 12 (2nd ‘⟨𝑢, 𝑣⟩) = 𝑣
84, 7eqtr2di 2255 . . . . . . . . . . 11 (⟨𝑢, 𝑣⟩ ∈ (𝐴 × 𝐵) → 𝑣 = ((2nd ↾ (𝐴 × 𝐵))‘⟨𝑢, 𝑣⟩))
9 f2ndres 6246 . . . . . . . . . . . . 13 (2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵
10 ffn 5425 . . . . . . . . . . . . 13 ((2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵 → (2nd ↾ (𝐴 × 𝐵)) Fn (𝐴 × 𝐵))
119, 10ax-mp 5 . . . . . . . . . . . 12 (2nd ↾ (𝐴 × 𝐵)) Fn (𝐴 × 𝐵)
12 fnfvelrn 5712 . . . . . . . . . . . 12 (((2nd ↾ (𝐴 × 𝐵)) Fn (𝐴 × 𝐵) ∧ ⟨𝑢, 𝑣⟩ ∈ (𝐴 × 𝐵)) → ((2nd ↾ (𝐴 × 𝐵))‘⟨𝑢, 𝑣⟩) ∈ ran (2nd ↾ (𝐴 × 𝐵)))
1311, 12mpan 424 . . . . . . . . . . 11 (⟨𝑢, 𝑣⟩ ∈ (𝐴 × 𝐵) → ((2nd ↾ (𝐴 × 𝐵))‘⟨𝑢, 𝑣⟩) ∈ ran (2nd ↾ (𝐴 × 𝐵)))
148, 13eqeltrd 2282 . . . . . . . . . 10 (⟨𝑢, 𝑣⟩ ∈ (𝐴 × 𝐵) → 𝑣 ∈ ran (2nd ↾ (𝐴 × 𝐵)))
153, 14sylbir 135 . . . . . . . . 9 ((𝑢𝐴𝑣𝐵) → 𝑣 ∈ ran (2nd ↾ (𝐴 × 𝐵)))
1615ex 115 . . . . . . . 8 (𝑢𝐴 → (𝑣𝐵𝑣 ∈ ran (2nd ↾ (𝐴 × 𝐵))))
1716exlimiv 1621 . . . . . . 7 (∃𝑢 𝑢𝐴 → (𝑣𝐵𝑣 ∈ ran (2nd ↾ (𝐴 × 𝐵))))
1817ssrdv 3199 . . . . . 6 (∃𝑢 𝑢𝐴𝐵 ⊆ ran (2nd ↾ (𝐴 × 𝐵)))
19 frn 5434 . . . . . . 7 ((2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵 → ran (2nd ↾ (𝐴 × 𝐵)) ⊆ 𝐵)
209, 19ax-mp 5 . . . . . 6 ran (2nd ↾ (𝐴 × 𝐵)) ⊆ 𝐵
2118, 20jctil 312 . . . . 5 (∃𝑢 𝑢𝐴 → (ran (2nd ↾ (𝐴 × 𝐵)) ⊆ 𝐵𝐵 ⊆ ran (2nd ↾ (𝐴 × 𝐵))))
22 eqss 3208 . . . . 5 (ran (2nd ↾ (𝐴 × 𝐵)) = 𝐵 ↔ (ran (2nd ↾ (𝐴 × 𝐵)) ⊆ 𝐵𝐵 ⊆ ran (2nd ↾ (𝐴 × 𝐵))))
2321, 22sylibr 134 . . . 4 (∃𝑢 𝑢𝐴 → ran (2nd ↾ (𝐴 × 𝐵)) = 𝐵)
2423, 9jctil 312 . . 3 (∃𝑢 𝑢𝐴 → ((2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵 ∧ ran (2nd ↾ (𝐴 × 𝐵)) = 𝐵))
25 dffo2 5502 . . 3 ((2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)–onto𝐵 ↔ ((2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵 ∧ ran (2nd ↾ (𝐴 × 𝐵)) = 𝐵))
2624, 25sylibr 134 . 2 (∃𝑢 𝑢𝐴 → (2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)–onto𝐵)
272, 26sylbir 135 1 (∃𝑥 𝑥𝐴 → (2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)–onto𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wex 1515  wcel 2176  wss 3166  cop 3636   × cxp 4673  ran crn 4676  cres 4677   Fn wfn 5266  wf 5267  ontowfo 5269  cfv 5271  2nd c2nd 6225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fo 5277  df-fv 5279  df-2nd 6227
This theorem is referenced by:  2ndconst  6308
  Copyright terms: Public domain W3C validator