ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fo2ndresm GIF version

Theorem fo2ndresm 6266
Description: Onto mapping of a restriction of the 2nd (second member of an ordered pair) function. (Contributed by Jim Kingdon, 24-Jan-2019.)
Assertion
Ref Expression
fo2ndresm (∃𝑥 𝑥𝐴 → (2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)–onto𝐵)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem fo2ndresm
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2269 . . 3 (𝑢 = 𝑥 → (𝑢𝐴𝑥𝐴))
21cbvexv 1943 . 2 (∃𝑢 𝑢𝐴 ↔ ∃𝑥 𝑥𝐴)
3 opelxp 4718 . . . . . . . . . 10 (⟨𝑢, 𝑣⟩ ∈ (𝐴 × 𝐵) ↔ (𝑢𝐴𝑣𝐵))
4 fvres 5618 . . . . . . . . . . . 12 (⟨𝑢, 𝑣⟩ ∈ (𝐴 × 𝐵) → ((2nd ↾ (𝐴 × 𝐵))‘⟨𝑢, 𝑣⟩) = (2nd ‘⟨𝑢, 𝑣⟩))
5 vex 2776 . . . . . . . . . . . . 13 𝑢 ∈ V
6 vex 2776 . . . . . . . . . . . . 13 𝑣 ∈ V
75, 6op2nd 6251 . . . . . . . . . . . 12 (2nd ‘⟨𝑢, 𝑣⟩) = 𝑣
84, 7eqtr2di 2256 . . . . . . . . . . 11 (⟨𝑢, 𝑣⟩ ∈ (𝐴 × 𝐵) → 𝑣 = ((2nd ↾ (𝐴 × 𝐵))‘⟨𝑢, 𝑣⟩))
9 f2ndres 6264 . . . . . . . . . . . . 13 (2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵
10 ffn 5440 . . . . . . . . . . . . 13 ((2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵 → (2nd ↾ (𝐴 × 𝐵)) Fn (𝐴 × 𝐵))
119, 10ax-mp 5 . . . . . . . . . . . 12 (2nd ↾ (𝐴 × 𝐵)) Fn (𝐴 × 𝐵)
12 fnfvelrn 5730 . . . . . . . . . . . 12 (((2nd ↾ (𝐴 × 𝐵)) Fn (𝐴 × 𝐵) ∧ ⟨𝑢, 𝑣⟩ ∈ (𝐴 × 𝐵)) → ((2nd ↾ (𝐴 × 𝐵))‘⟨𝑢, 𝑣⟩) ∈ ran (2nd ↾ (𝐴 × 𝐵)))
1311, 12mpan 424 . . . . . . . . . . 11 (⟨𝑢, 𝑣⟩ ∈ (𝐴 × 𝐵) → ((2nd ↾ (𝐴 × 𝐵))‘⟨𝑢, 𝑣⟩) ∈ ran (2nd ↾ (𝐴 × 𝐵)))
148, 13eqeltrd 2283 . . . . . . . . . 10 (⟨𝑢, 𝑣⟩ ∈ (𝐴 × 𝐵) → 𝑣 ∈ ran (2nd ↾ (𝐴 × 𝐵)))
153, 14sylbir 135 . . . . . . . . 9 ((𝑢𝐴𝑣𝐵) → 𝑣 ∈ ran (2nd ↾ (𝐴 × 𝐵)))
1615ex 115 . . . . . . . 8 (𝑢𝐴 → (𝑣𝐵𝑣 ∈ ran (2nd ↾ (𝐴 × 𝐵))))
1716exlimiv 1622 . . . . . . 7 (∃𝑢 𝑢𝐴 → (𝑣𝐵𝑣 ∈ ran (2nd ↾ (𝐴 × 𝐵))))
1817ssrdv 3203 . . . . . 6 (∃𝑢 𝑢𝐴𝐵 ⊆ ran (2nd ↾ (𝐴 × 𝐵)))
19 frn 5449 . . . . . . 7 ((2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵 → ran (2nd ↾ (𝐴 × 𝐵)) ⊆ 𝐵)
209, 19ax-mp 5 . . . . . 6 ran (2nd ↾ (𝐴 × 𝐵)) ⊆ 𝐵
2118, 20jctil 312 . . . . 5 (∃𝑢 𝑢𝐴 → (ran (2nd ↾ (𝐴 × 𝐵)) ⊆ 𝐵𝐵 ⊆ ran (2nd ↾ (𝐴 × 𝐵))))
22 eqss 3212 . . . . 5 (ran (2nd ↾ (𝐴 × 𝐵)) = 𝐵 ↔ (ran (2nd ↾ (𝐴 × 𝐵)) ⊆ 𝐵𝐵 ⊆ ran (2nd ↾ (𝐴 × 𝐵))))
2321, 22sylibr 134 . . . 4 (∃𝑢 𝑢𝐴 → ran (2nd ↾ (𝐴 × 𝐵)) = 𝐵)
2423, 9jctil 312 . . 3 (∃𝑢 𝑢𝐴 → ((2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵 ∧ ran (2nd ↾ (𝐴 × 𝐵)) = 𝐵))
25 dffo2 5519 . . 3 ((2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)–onto𝐵 ↔ ((2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵 ∧ ran (2nd ↾ (𝐴 × 𝐵)) = 𝐵))
2624, 25sylibr 134 . 2 (∃𝑢 𝑢𝐴 → (2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)–onto𝐵)
272, 26sylbir 135 1 (∃𝑥 𝑥𝐴 → (2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)–onto𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wex 1516  wcel 2177  wss 3170  cop 3641   × cxp 4686  ran crn 4689  cres 4690   Fn wfn 5280  wf 5281  ontowfo 5283  cfv 5285  2nd c2nd 6243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264  ax-un 4493
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-fo 5291  df-fv 5293  df-2nd 6245
This theorem is referenced by:  2ndconst  6326
  Copyright terms: Public domain W3C validator