ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setsvala GIF version

Theorem setsvala 12652
Description: Value of the structure replacement function. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Jim Kingdon, 20-Jan-2023.)
Assertion
Ref Expression
setsvala ((𝑆𝑉𝐴𝑋𝐵𝑊) → (𝑆 sSet ⟨𝐴, 𝐵⟩) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩}))

Proof of Theorem setsvala
StepHypRef Expression
1 simp1 999 . . 3 ((𝑆𝑉𝐴𝑋𝐵𝑊) → 𝑆𝑉)
2 opexg 4258 . . . 4 ((𝐴𝑋𝐵𝑊) → ⟨𝐴, 𝐵⟩ ∈ V)
323adant1 1017 . . 3 ((𝑆𝑉𝐴𝑋𝐵𝑊) → ⟨𝐴, 𝐵⟩ ∈ V)
4 setsvalg 12651 . . 3 ((𝑆𝑉 ∧ ⟨𝐴, 𝐵⟩ ∈ V) → (𝑆 sSet ⟨𝐴, 𝐵⟩) = ((𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) ∪ {⟨𝐴, 𝐵⟩}))
51, 3, 4syl2anc 411 . 2 ((𝑆𝑉𝐴𝑋𝐵𝑊) → (𝑆 sSet ⟨𝐴, 𝐵⟩) = ((𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) ∪ {⟨𝐴, 𝐵⟩}))
6 dmsnopg 5138 . . . . . 6 (𝐵𝑊 → dom {⟨𝐴, 𝐵⟩} = {𝐴})
76difeq2d 3278 . . . . 5 (𝐵𝑊 → (V ∖ dom {⟨𝐴, 𝐵⟩}) = (V ∖ {𝐴}))
87reseq2d 4943 . . . 4 (𝐵𝑊 → (𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) = (𝑆 ↾ (V ∖ {𝐴})))
98uneq1d 3313 . . 3 (𝐵𝑊 → ((𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) ∪ {⟨𝐴, 𝐵⟩}) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩}))
1093ad2ant3 1022 . 2 ((𝑆𝑉𝐴𝑋𝐵𝑊) → ((𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) ∪ {⟨𝐴, 𝐵⟩}) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩}))
115, 10eqtrd 2226 1 ((𝑆𝑉𝐴𝑋𝐵𝑊) → (𝑆 sSet ⟨𝐴, 𝐵⟩) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩}))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 980   = wceq 1364  wcel 2164  Vcvv 2760  cdif 3151  cun 3152  {csn 3619  cop 3622  dom cdm 4660  cres 4662  (class class class)co 5919   sSet csts 12619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-res 4672  df-iota 5216  df-fun 5257  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-sets 12628
This theorem is referenced by:  setsex  12653  strsetsid  12654  fvsetsid  12655  setsabsd  12660  setscom  12661  setsslid  12672
  Copyright terms: Public domain W3C validator