![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > setsvala | GIF version |
Description: Value of the structure replacement function. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Jim Kingdon, 20-Jan-2023.) |
Ref | Expression |
---|---|
setsvala | ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑊) → (𝑆 sSet ⟨𝐴, 𝐵⟩) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 998 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑊) → 𝑆 ∈ 𝑉) | |
2 | opexg 4240 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑊) → ⟨𝐴, 𝐵⟩ ∈ V) | |
3 | 2 | 3adant1 1016 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑊) → ⟨𝐴, 𝐵⟩ ∈ V) |
4 | setsvalg 12505 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ ⟨𝐴, 𝐵⟩ ∈ V) → (𝑆 sSet ⟨𝐴, 𝐵⟩) = ((𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) ∪ {⟨𝐴, 𝐵⟩})) | |
5 | 1, 3, 4 | syl2anc 411 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑊) → (𝑆 sSet ⟨𝐴, 𝐵⟩) = ((𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) ∪ {⟨𝐴, 𝐵⟩})) |
6 | dmsnopg 5112 | . . . . . 6 ⊢ (𝐵 ∈ 𝑊 → dom {⟨𝐴, 𝐵⟩} = {𝐴}) | |
7 | 6 | difeq2d 3265 | . . . . 5 ⊢ (𝐵 ∈ 𝑊 → (V ∖ dom {⟨𝐴, 𝐵⟩}) = (V ∖ {𝐴})) |
8 | 7 | reseq2d 4919 | . . . 4 ⊢ (𝐵 ∈ 𝑊 → (𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) = (𝑆 ↾ (V ∖ {𝐴}))) |
9 | 8 | uneq1d 3300 | . . 3 ⊢ (𝐵 ∈ 𝑊 → ((𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) ∪ {⟨𝐴, 𝐵⟩}) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩})) |
10 | 9 | 3ad2ant3 1021 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑊) → ((𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) ∪ {⟨𝐴, 𝐵⟩}) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩})) |
11 | 5, 10 | eqtrd 2220 | 1 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑊) → (𝑆 sSet ⟨𝐴, 𝐵⟩) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩})) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 979 = wceq 1363 ∈ wcel 2158 Vcvv 2749 ∖ cdif 3138 ∪ cun 3139 {csn 3604 ⟨cop 3607 dom cdm 4638 ↾ cres 4640 (class class class)co 5888 sSet csts 12473 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-ral 2470 df-rex 2471 df-rab 2474 df-v 2751 df-sbc 2975 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-br 4016 df-opab 4077 df-id 4305 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-res 4650 df-iota 5190 df-fun 5230 df-fv 5236 df-ov 5891 df-oprab 5892 df-mpo 5893 df-sets 12482 |
This theorem is referenced by: setsex 12507 strsetsid 12508 fvsetsid 12509 setsabsd 12514 setscom 12515 setsslid 12526 |
Copyright terms: Public domain | W3C validator |