![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqtr4id | GIF version |
Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
Ref | Expression |
---|---|
eqtr4id.2 | ⊢ 𝐴 = 𝐵 |
eqtr4id.1 | ⊢ (𝜑 → 𝐶 = 𝐵) |
Ref | Expression |
---|---|
eqtr4id | ⊢ (𝜑 → 𝐴 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr4id.1 | . 2 ⊢ (𝜑 → 𝐶 = 𝐵) | |
2 | eqtr4id.2 | . . 3 ⊢ 𝐴 = 𝐵 | |
3 | 2 | eqcomi 2197 | . 2 ⊢ 𝐵 = 𝐴 |
4 | 1, 3 | eqtr2di 2243 | 1 ⊢ (𝜑 → 𝐴 = 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-4 1521 ax-17 1537 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 |
This theorem is referenced by: iftrue 3562 iffalse 3565 difprsn1 3757 dmmptg 5163 relcoi1 5197 funimacnv 5330 dmmptd 5384 dffv3g 5550 dfimafn 5605 fvco2 5626 isoini 5861 iotaexel 5878 oprabco 6270 ixpconstg 6761 unfiexmid 6974 undifdc 6980 sbthlemi4 7019 sbthlemi5 7020 sbthlemi6 7021 supval2ti 7054 exmidfodomrlemim 7261 suplocexprlemex 7782 eqneg 8751 zeo 9422 fseq1p1m1 10160 seq3val 10531 seqvalcd 10532 hashfzo 10893 hashxp 10897 wrdval 10917 wrdnval 10944 fsumconst 11597 modfsummod 11601 telfsumo 11609 fprodconst 11763 mulgcd 12153 algcvg 12186 phiprmpw 12360 phisum 12378 strslfv3 12664 resseqnbasd 12691 imasplusg 12891 imasmulr 12892 ismgmid 12960 dfrhm2 13650 subrg1 13727 2idlbas 14011 uptx 14442 resubmet 14716 ply1termlem 14888 lgsval4lem 15127 m1lgs 15192 |
Copyright terms: Public domain | W3C validator |