| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr4id | GIF version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
| Ref | Expression |
|---|---|
| eqtr4id.2 | ⊢ 𝐴 = 𝐵 |
| eqtr4id.1 | ⊢ (𝜑 → 𝐶 = 𝐵) |
| Ref | Expression |
|---|---|
| eqtr4id | ⊢ (𝜑 → 𝐴 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr4id.1 | . 2 ⊢ (𝜑 → 𝐶 = 𝐵) | |
| 2 | eqtr4id.2 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 2 | eqcomi 2233 | . 2 ⊢ 𝐵 = 𝐴 |
| 4 | 1, 3 | eqtr2di 2279 | 1 ⊢ (𝜑 → 𝐴 = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 |
| This theorem is referenced by: iftrue 3607 iffalse 3610 difprsn1 3807 dmmptg 5226 relcoi1 5260 funimacnv 5397 dmmptd 5454 dffv3g 5625 dfimafn 5684 fvco2 5705 isoini 5948 iotaexel 5965 fvmpopr2d 6147 oprabco 6369 ixpconstg 6862 unfiexmid 7088 undifdc 7094 sbthlemi4 7135 sbthlemi5 7136 sbthlemi6 7137 supval2ti 7170 exmidfodomrlemim 7387 suplocexprlemex 7917 eqneg 8887 zeo 9560 fseq1p1m1 10298 seq3val 10690 seqvalcd 10691 hashfzo 11052 hashxp 11056 wrdval 11082 wrdnval 11110 swrdccat3blem 11279 fsumconst 11973 modfsummod 11977 telfsumo 11985 fprodconst 12139 mulgcd 12545 algcvg 12578 phiprmpw 12752 phisum 12771 strslfv3 13086 resseqnbasd 13114 pwssnf1o 13339 imasplusg 13349 imasmulr 13350 ismgmid 13418 pws0g 13492 dfrhm2 14126 subrg1 14203 2idlbas 14487 psrbagfi 14645 psrlinv 14656 mplbascoe 14663 mplplusgg 14675 uptx 14956 resubmet 15238 ply1termlem 15424 lgsval4lem 15698 lgsquadlem2 15765 m1lgs 15772 uspgrf1oedg 15982 |
| Copyright terms: Public domain | W3C validator |