| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr4id | GIF version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
| Ref | Expression |
|---|---|
| eqtr4id.2 | ⊢ 𝐴 = 𝐵 |
| eqtr4id.1 | ⊢ (𝜑 → 𝐶 = 𝐵) |
| Ref | Expression |
|---|---|
| eqtr4id | ⊢ (𝜑 → 𝐴 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr4id.1 | . 2 ⊢ (𝜑 → 𝐶 = 𝐵) | |
| 2 | eqtr4id.2 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 2 | eqcomi 2210 | . 2 ⊢ 𝐵 = 𝐴 |
| 4 | 1, 3 | eqtr2di 2256 | 1 ⊢ (𝜑 → 𝐴 = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-4 1534 ax-17 1550 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-cleq 2199 |
| This theorem is referenced by: iftrue 3577 iffalse 3580 difprsn1 3774 dmmptg 5185 relcoi1 5219 funimacnv 5355 dmmptd 5412 dffv3g 5579 dfimafn 5634 fvco2 5655 isoini 5894 iotaexel 5911 fvmpopr2d 6089 oprabco 6310 ixpconstg 6801 unfiexmid 7022 undifdc 7028 sbthlemi4 7069 sbthlemi5 7070 sbthlemi6 7071 supval2ti 7104 exmidfodomrlemim 7316 suplocexprlemex 7842 eqneg 8812 zeo 9485 fseq1p1m1 10223 seq3val 10612 seqvalcd 10613 hashfzo 10974 hashxp 10978 wrdval 11004 wrdnval 11031 fsumconst 11809 modfsummod 11813 telfsumo 11821 fprodconst 11975 mulgcd 12381 algcvg 12414 phiprmpw 12588 phisum 12607 strslfv3 12922 resseqnbasd 12949 pwssnf1o 13174 imasplusg 13184 imasmulr 13185 ismgmid 13253 pws0g 13327 dfrhm2 13960 subrg1 14037 2idlbas 14321 psrbagfi 14479 psrlinv 14490 mplbascoe 14497 mplplusgg 14509 uptx 14790 resubmet 15072 ply1termlem 15258 lgsval4lem 15532 lgsquadlem2 15599 m1lgs 15606 |
| Copyright terms: Public domain | W3C validator |