| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr4id | GIF version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
| Ref | Expression |
|---|---|
| eqtr4id.2 | ⊢ 𝐴 = 𝐵 |
| eqtr4id.1 | ⊢ (𝜑 → 𝐶 = 𝐵) |
| Ref | Expression |
|---|---|
| eqtr4id | ⊢ (𝜑 → 𝐴 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr4id.1 | . 2 ⊢ (𝜑 → 𝐶 = 𝐵) | |
| 2 | eqtr4id.2 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 2 | eqcomi 2200 | . 2 ⊢ 𝐵 = 𝐴 |
| 4 | 1, 3 | eqtr2di 2246 | 1 ⊢ (𝜑 → 𝐴 = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: iftrue 3567 iffalse 3570 difprsn1 3762 dmmptg 5168 relcoi1 5202 funimacnv 5335 dmmptd 5391 dffv3g 5557 dfimafn 5612 fvco2 5633 isoini 5868 iotaexel 5885 fvmpopr2d 6063 oprabco 6284 ixpconstg 6775 unfiexmid 6988 undifdc 6994 sbthlemi4 7035 sbthlemi5 7036 sbthlemi6 7037 supval2ti 7070 exmidfodomrlemim 7282 suplocexprlemex 7808 eqneg 8778 zeo 9450 fseq1p1m1 10188 seq3val 10571 seqvalcd 10572 hashfzo 10933 hashxp 10937 wrdval 10957 wrdnval 10984 fsumconst 11638 modfsummod 11642 telfsumo 11650 fprodconst 11804 mulgcd 12210 algcvg 12243 phiprmpw 12417 phisum 12436 strslfv3 12751 resseqnbasd 12778 pwssnf1o 13002 imasplusg 13012 imasmulr 13013 ismgmid 13081 pws0g 13155 dfrhm2 13788 subrg1 13865 2idlbas 14149 psrlinv 14314 uptx 14596 resubmet 14878 ply1termlem 15064 lgsval4lem 15338 lgsquadlem2 15405 m1lgs 15412 |
| Copyright terms: Public domain | W3C validator |