![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqtr4id | GIF version |
Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
Ref | Expression |
---|---|
eqtr4id.2 | ⊢ 𝐴 = 𝐵 |
eqtr4id.1 | ⊢ (𝜑 → 𝐶 = 𝐵) |
Ref | Expression |
---|---|
eqtr4id | ⊢ (𝜑 → 𝐴 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr4id.1 | . 2 ⊢ (𝜑 → 𝐶 = 𝐵) | |
2 | eqtr4id.2 | . . 3 ⊢ 𝐴 = 𝐵 | |
3 | 2 | eqcomi 2191 | . 2 ⊢ 𝐵 = 𝐴 |
4 | 1, 3 | eqtr2di 2237 | 1 ⊢ (𝜑 → 𝐴 = 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1363 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1457 ax-gen 1459 ax-4 1520 ax-17 1536 ax-ext 2169 |
This theorem depends on definitions: df-bi 117 df-cleq 2180 |
This theorem is referenced by: iftrue 3551 iffalse 3554 difprsn1 3743 dmmptg 5138 relcoi1 5172 funimacnv 5304 dmmptd 5358 dffv3g 5523 dfimafn 5577 fvco2 5598 isoini 5832 oprabco 6232 ixpconstg 6721 unfiexmid 6931 undifdc 6937 sbthlemi4 6973 sbthlemi5 6974 sbthlemi6 6975 supval2ti 7008 exmidfodomrlemim 7214 suplocexprlemex 7735 eqneg 8703 zeo 9372 fseq1p1m1 10108 seq3val 10472 seqvalcd 10473 hashfzo 10816 hashxp 10820 fsumconst 11476 modfsummod 11480 telfsumo 11488 fprodconst 11642 mulgcd 12031 algcvg 12062 phiprmpw 12236 phisum 12254 strslfv3 12522 resseqnbasd 12547 imasplusg 12747 imasmulr 12748 ismgmid 12815 subrg1 13451 2idlbas 13703 uptx 14070 resubmet 14344 lgsval4lem 14708 m1lgs 14748 |
Copyright terms: Public domain | W3C validator |