| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr4id | GIF version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
| Ref | Expression |
|---|---|
| eqtr4id.2 | ⊢ 𝐴 = 𝐵 |
| eqtr4id.1 | ⊢ (𝜑 → 𝐶 = 𝐵) |
| Ref | Expression |
|---|---|
| eqtr4id | ⊢ (𝜑 → 𝐴 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr4id.1 | . 2 ⊢ (𝜑 → 𝐶 = 𝐵) | |
| 2 | eqtr4id.2 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 2 | eqcomi 2200 | . 2 ⊢ 𝐵 = 𝐴 |
| 4 | 1, 3 | eqtr2di 2246 | 1 ⊢ (𝜑 → 𝐴 = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: iftrue 3566 iffalse 3569 difprsn1 3761 dmmptg 5167 relcoi1 5201 funimacnv 5334 dmmptd 5388 dffv3g 5554 dfimafn 5609 fvco2 5630 isoini 5865 iotaexel 5882 fvmpopr2d 6059 oprabco 6275 ixpconstg 6766 unfiexmid 6979 undifdc 6985 sbthlemi4 7026 sbthlemi5 7027 sbthlemi6 7028 supval2ti 7061 exmidfodomrlemim 7268 suplocexprlemex 7789 eqneg 8759 zeo 9431 fseq1p1m1 10169 seq3val 10552 seqvalcd 10553 hashfzo 10914 hashxp 10918 wrdval 10938 wrdnval 10965 fsumconst 11619 modfsummod 11623 telfsumo 11631 fprodconst 11785 mulgcd 12183 algcvg 12216 phiprmpw 12390 phisum 12409 strslfv3 12724 resseqnbasd 12751 imasplusg 12951 imasmulr 12952 ismgmid 13020 dfrhm2 13710 subrg1 13787 2idlbas 14071 uptx 14510 resubmet 14792 ply1termlem 14978 lgsval4lem 15252 lgsquadlem2 15319 m1lgs 15326 |
| Copyright terms: Public domain | W3C validator |