Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqtr4id | GIF version |
Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
Ref | Expression |
---|---|
eqtr4id.2 | ⊢ 𝐴 = 𝐵 |
eqtr4id.1 | ⊢ (𝜑 → 𝐶 = 𝐵) |
Ref | Expression |
---|---|
eqtr4id | ⊢ (𝜑 → 𝐴 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr4id.1 | . 2 ⊢ (𝜑 → 𝐶 = 𝐵) | |
2 | eqtr4id.2 | . . 3 ⊢ 𝐴 = 𝐵 | |
3 | 2 | eqcomi 2169 | . 2 ⊢ 𝐵 = 𝐴 |
4 | 1, 3 | eqtr2di 2216 | 1 ⊢ (𝜑 → 𝐴 = 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-4 1498 ax-17 1514 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 |
This theorem is referenced by: iftrue 3525 iffalse 3528 difprsn1 3712 dmmptg 5101 relcoi1 5135 funimacnv 5264 dmmptd 5318 dffv3g 5482 dfimafn 5535 fvco2 5555 isoini 5786 oprabco 6185 ixpconstg 6673 unfiexmid 6883 undifdc 6889 sbthlemi4 6925 sbthlemi5 6926 sbthlemi6 6927 supval2ti 6960 exmidfodomrlemim 7157 suplocexprlemex 7663 eqneg 8628 zeo 9296 fseq1p1m1 10029 seq3val 10393 seqvalcd 10394 hashfzo 10735 hashxp 10739 fsumconst 11395 modfsummod 11399 telfsumo 11407 fprodconst 11561 mulgcd 11949 algcvg 11980 phiprmpw 12154 phisum 12172 strslfv3 12439 ismgmid 12608 uptx 12914 resubmet 13188 lgsval4lem 13552 |
Copyright terms: Public domain | W3C validator |