| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr4id | GIF version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
| Ref | Expression |
|---|---|
| eqtr4id.2 | ⊢ 𝐴 = 𝐵 |
| eqtr4id.1 | ⊢ (𝜑 → 𝐶 = 𝐵) |
| Ref | Expression |
|---|---|
| eqtr4id | ⊢ (𝜑 → 𝐴 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr4id.1 | . 2 ⊢ (𝜑 → 𝐶 = 𝐵) | |
| 2 | eqtr4id.2 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 2 | eqcomi 2213 | . 2 ⊢ 𝐵 = 𝐴 |
| 4 | 1, 3 | eqtr2di 2259 | 1 ⊢ (𝜑 → 𝐴 = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1375 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1473 ax-gen 1475 ax-4 1536 ax-17 1552 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-cleq 2202 |
| This theorem is referenced by: iftrue 3587 iffalse 3590 difprsn1 3786 dmmptg 5202 relcoi1 5236 funimacnv 5373 dmmptd 5430 dffv3g 5599 dfimafn 5655 fvco2 5676 isoini 5915 iotaexel 5932 fvmpopr2d 6112 oprabco 6333 ixpconstg 6824 unfiexmid 7048 undifdc 7054 sbthlemi4 7095 sbthlemi5 7096 sbthlemi6 7097 supval2ti 7130 exmidfodomrlemim 7347 suplocexprlemex 7877 eqneg 8847 zeo 9520 fseq1p1m1 10258 seq3val 10649 seqvalcd 10650 hashfzo 11011 hashxp 11015 wrdval 11041 wrdnval 11068 swrdccat3blem 11237 fsumconst 11931 modfsummod 11935 telfsumo 11943 fprodconst 12097 mulgcd 12503 algcvg 12536 phiprmpw 12710 phisum 12729 strslfv3 13044 resseqnbasd 13072 pwssnf1o 13297 imasplusg 13307 imasmulr 13308 ismgmid 13376 pws0g 13450 dfrhm2 14083 subrg1 14160 2idlbas 14444 psrbagfi 14602 psrlinv 14613 mplbascoe 14620 mplplusgg 14632 uptx 14913 resubmet 15195 ply1termlem 15381 lgsval4lem 15655 lgsquadlem2 15722 m1lgs 15729 uspgrf1oedg 15939 |
| Copyright terms: Public domain | W3C validator |