ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqtr4id GIF version

Theorem eqtr4id 2229
Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.)
Hypotheses
Ref Expression
eqtr4id.2 𝐴 = 𝐵
eqtr4id.1 (𝜑𝐶 = 𝐵)
Assertion
Ref Expression
eqtr4id (𝜑𝐴 = 𝐶)

Proof of Theorem eqtr4id
StepHypRef Expression
1 eqtr4id.1 . 2 (𝜑𝐶 = 𝐵)
2 eqtr4id.2 . . 3 𝐴 = 𝐵
32eqcomi 2181 . 2 𝐵 = 𝐴
41, 3eqtr2di 2227 1 (𝜑𝐴 = 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-4 1510  ax-17 1526  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-cleq 2170
This theorem is referenced by:  iftrue  3541  iffalse  3544  difprsn1  3733  dmmptg  5128  relcoi1  5162  funimacnv  5294  dmmptd  5348  dffv3g  5513  dfimafn  5566  fvco2  5587  isoini  5821  oprabco  6220  ixpconstg  6709  unfiexmid  6919  undifdc  6925  sbthlemi4  6961  sbthlemi5  6962  sbthlemi6  6963  supval2ti  6996  exmidfodomrlemim  7202  suplocexprlemex  7723  eqneg  8691  zeo  9360  fseq1p1m1  10096  seq3val  10460  seqvalcd  10461  hashfzo  10804  hashxp  10808  fsumconst  11464  modfsummod  11468  telfsumo  11476  fprodconst  11630  mulgcd  12019  algcvg  12050  phiprmpw  12224  phisum  12242  strslfv3  12510  resseqnbasd  12534  imasplusg  12734  imasmulr  12735  ismgmid  12801  subrg1  13357  uptx  13859  resubmet  14133  lgsval4lem  14497  m1lgs  14537
  Copyright terms: Public domain W3C validator