ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  finds GIF version

Theorem finds 4482
Description: Principle of Finite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last two are the basis and the induction step. Theorem Schema 22 of [Suppes] p. 136. This is Metamath 100 proof #74. (Contributed by NM, 14-Apr-1995.)
Hypotheses
Ref Expression
finds.1 (𝑥 = ∅ → (𝜑𝜓))
finds.2 (𝑥 = 𝑦 → (𝜑𝜒))
finds.3 (𝑥 = suc 𝑦 → (𝜑𝜃))
finds.4 (𝑥 = 𝐴 → (𝜑𝜏))
finds.5 𝜓
finds.6 (𝑦 ∈ ω → (𝜒𝜃))
Assertion
Ref Expression
finds (𝐴 ∈ ω → 𝜏)
Distinct variable groups:   𝑥,𝑦   𝑥,𝐴   𝜓,𝑥   𝜒,𝑥   𝜃,𝑥   𝜏,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)   𝜏(𝑦)   𝐴(𝑦)

Proof of Theorem finds
StepHypRef Expression
1 finds.5 . . . . 5 𝜓
2 0ex 4023 . . . . . 6 ∅ ∈ V
3 finds.1 . . . . . 6 (𝑥 = ∅ → (𝜑𝜓))
42, 3elab 2800 . . . . 5 (∅ ∈ {𝑥𝜑} ↔ 𝜓)
51, 4mpbir 145 . . . 4 ∅ ∈ {𝑥𝜑}
6 finds.6 . . . . . 6 (𝑦 ∈ ω → (𝜒𝜃))
7 vex 2661 . . . . . . 7 𝑦 ∈ V
8 finds.2 . . . . . . 7 (𝑥 = 𝑦 → (𝜑𝜒))
97, 8elab 2800 . . . . . 6 (𝑦 ∈ {𝑥𝜑} ↔ 𝜒)
107sucex 4383 . . . . . . 7 suc 𝑦 ∈ V
11 finds.3 . . . . . . 7 (𝑥 = suc 𝑦 → (𝜑𝜃))
1210, 11elab 2800 . . . . . 6 (suc 𝑦 ∈ {𝑥𝜑} ↔ 𝜃)
136, 9, 123imtr4g 204 . . . . 5 (𝑦 ∈ ω → (𝑦 ∈ {𝑥𝜑} → suc 𝑦 ∈ {𝑥𝜑}))
1413rgen 2460 . . . 4 𝑦 ∈ ω (𝑦 ∈ {𝑥𝜑} → suc 𝑦 ∈ {𝑥𝜑})
15 peano5 4480 . . . 4 ((∅ ∈ {𝑥𝜑} ∧ ∀𝑦 ∈ ω (𝑦 ∈ {𝑥𝜑} → suc 𝑦 ∈ {𝑥𝜑})) → ω ⊆ {𝑥𝜑})
165, 14, 15mp2an 420 . . 3 ω ⊆ {𝑥𝜑}
1716sseli 3061 . 2 (𝐴 ∈ ω → 𝐴 ∈ {𝑥𝜑})
18 finds.4 . . 3 (𝑥 = 𝐴 → (𝜑𝜏))
1918elabg 2801 . 2 (𝐴 ∈ ω → (𝐴 ∈ {𝑥𝜑} ↔ 𝜏))
2017, 19mpbid 146 1 (𝐴 ∈ ω → 𝜏)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1314  wcel 1463  {cab 2101  wral 2391  wss 3039  c0 3331  suc csuc 4255  ωcom 4472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-nul 4022  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-iinf 4470
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ral 2396  df-rex 2397  df-v 2660  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-pw 3480  df-sn 3501  df-pr 3502  df-uni 3705  df-int 3740  df-suc 4261  df-iom 4473
This theorem is referenced by:  findes  4485  nn0suc  4486  elnn  4487  ordom  4488  nndceq0  4499  0elnn  4500  omsinds  4503  nna0r  6340  nnm0r  6341  nnsucelsuc  6353  nneneq  6717  php5  6718  php5dom  6723  fidcenumlemrk  6808  fidcenumlemr  6809  frec2uzltd  10127  frecuzrdgg  10140  seq3val  10182  seqvalcd  10183  omgadd  10499  zfz1iso  10535  ennnfonelemhom  11834  nninfalllemn  13036  nninfsellemdc  13040
  Copyright terms: Public domain W3C validator