| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > finds | GIF version | ||
| Description: Principle of Finite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last two are the basis and the induction step. Theorem Schema 22 of [Suppes] p. 136. This is Metamath 100 proof #74. (Contributed by NM, 14-Apr-1995.) |
| Ref | Expression |
|---|---|
| finds.1 | ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) |
| finds.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) |
| finds.3 | ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ 𝜃)) |
| finds.4 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) |
| finds.5 | ⊢ 𝜓 |
| finds.6 | ⊢ (𝑦 ∈ ω → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| finds | ⊢ (𝐴 ∈ ω → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | finds.5 | . . . . 5 ⊢ 𝜓 | |
| 2 | 0ex 4170 | . . . . . 6 ⊢ ∅ ∈ V | |
| 3 | finds.1 | . . . . . 6 ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) | |
| 4 | 2, 3 | elab 2916 | . . . . 5 ⊢ (∅ ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) |
| 5 | 1, 4 | mpbir 146 | . . . 4 ⊢ ∅ ∈ {𝑥 ∣ 𝜑} |
| 6 | finds.6 | . . . . . 6 ⊢ (𝑦 ∈ ω → (𝜒 → 𝜃)) | |
| 7 | vex 2774 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 8 | finds.2 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) | |
| 9 | 7, 8 | elab 2916 | . . . . . 6 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝜒) |
| 10 | 7 | sucex 4546 | . . . . . . 7 ⊢ suc 𝑦 ∈ V |
| 11 | finds.3 | . . . . . . 7 ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ 𝜃)) | |
| 12 | 10, 11 | elab 2916 | . . . . . 6 ⊢ (suc 𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝜃) |
| 13 | 6, 9, 12 | 3imtr4g 205 | . . . . 5 ⊢ (𝑦 ∈ ω → (𝑦 ∈ {𝑥 ∣ 𝜑} → suc 𝑦 ∈ {𝑥 ∣ 𝜑})) |
| 14 | 13 | rgen 2558 | . . . 4 ⊢ ∀𝑦 ∈ ω (𝑦 ∈ {𝑥 ∣ 𝜑} → suc 𝑦 ∈ {𝑥 ∣ 𝜑}) |
| 15 | peano5 4645 | . . . 4 ⊢ ((∅ ∈ {𝑥 ∣ 𝜑} ∧ ∀𝑦 ∈ ω (𝑦 ∈ {𝑥 ∣ 𝜑} → suc 𝑦 ∈ {𝑥 ∣ 𝜑})) → ω ⊆ {𝑥 ∣ 𝜑}) | |
| 16 | 5, 14, 15 | mp2an 426 | . . 3 ⊢ ω ⊆ {𝑥 ∣ 𝜑} |
| 17 | 16 | sseli 3188 | . 2 ⊢ (𝐴 ∈ ω → 𝐴 ∈ {𝑥 ∣ 𝜑}) |
| 18 | finds.4 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) | |
| 19 | 18 | elabg 2918 | . 2 ⊢ (𝐴 ∈ ω → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜏)) |
| 20 | 17, 19 | mpbid 147 | 1 ⊢ (𝐴 ∈ ω → 𝜏) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1372 ∈ wcel 2175 {cab 2190 ∀wral 2483 ⊆ wss 3165 ∅c0 3459 suc csuc 4411 ωcom 4637 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-iinf 4635 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-uni 3850 df-int 3885 df-suc 4417 df-iom 4638 |
| This theorem is referenced by: findes 4650 nn0suc 4651 elomssom 4652 ordom 4654 nndceq0 4665 0elnn 4666 omsinds 4669 nna0r 6563 nnm0r 6564 nnsucelsuc 6576 nneneq 6953 php5 6954 php5dom 6959 fidcenumlemrk 7055 fidcenumlemr 7056 nninfninc 7224 nnnninfeq 7229 nnnninfeq2 7230 frec2uzltd 10546 frecuzrdgg 10559 seq3val 10603 seqvalcd 10604 omgadd 10945 zfz1iso 10984 ennnfonelemhom 12728 nninfsellemdc 15880 nnnninfex 15892 |
| Copyright terms: Public domain | W3C validator |