| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lspsn | GIF version | ||
| Description: Span of the singleton of a vector. (Contributed by NM, 14-Jan-2014.) (Proof shortened by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lspsn.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lspsn.k | ⊢ 𝐾 = (Base‘𝐹) |
| lspsn.v | ⊢ 𝑉 = (Base‘𝑊) |
| lspsn.t | ⊢ · = ( ·𝑠 ‘𝑊) |
| lspsn.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| Ref | Expression |
|---|---|
| lspsn | ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) = {𝑣 ∣ ∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2229 | . . 3 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
| 2 | lspsn.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 3 | simpl 109 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑊 ∈ LMod) | |
| 4 | lspsn.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 5 | lspsn.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 6 | lspsn.t | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 7 | lspsn.k | . . . 4 ⊢ 𝐾 = (Base‘𝐹) | |
| 8 | 4, 5, 6, 7, 1 | lss1d 14355 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → {𝑣 ∣ ∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋)} ∈ (LSubSp‘𝑊)) |
| 9 | eqid 2229 | . . . . . 6 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
| 10 | 5, 7, 9 | lmod1cl 14287 | . . . . 5 ⊢ (𝑊 ∈ LMod → (1r‘𝐹) ∈ 𝐾) |
| 11 | 4, 5, 6, 9 | lmodvs1 14288 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((1r‘𝐹) · 𝑋) = 𝑋) |
| 12 | 11 | eqcomd 2235 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑋 = ((1r‘𝐹) · 𝑋)) |
| 13 | oveq1 6014 | . . . . . 6 ⊢ (𝑘 = (1r‘𝐹) → (𝑘 · 𝑋) = ((1r‘𝐹) · 𝑋)) | |
| 14 | 13 | rspceeqv 2925 | . . . . 5 ⊢ (((1r‘𝐹) ∈ 𝐾 ∧ 𝑋 = ((1r‘𝐹) · 𝑋)) → ∃𝑘 ∈ 𝐾 𝑋 = (𝑘 · 𝑋)) |
| 15 | 10, 12, 14 | syl2an2r 597 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ∃𝑘 ∈ 𝐾 𝑋 = (𝑘 · 𝑋)) |
| 16 | eqeq1 2236 | . . . . . . 7 ⊢ (𝑣 = 𝑋 → (𝑣 = (𝑘 · 𝑋) ↔ 𝑋 = (𝑘 · 𝑋))) | |
| 17 | 16 | rexbidv 2531 | . . . . . 6 ⊢ (𝑣 = 𝑋 → (∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋) ↔ ∃𝑘 ∈ 𝐾 𝑋 = (𝑘 · 𝑋))) |
| 18 | 17 | elabg 2949 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → (𝑋 ∈ {𝑣 ∣ ∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋)} ↔ ∃𝑘 ∈ 𝐾 𝑋 = (𝑘 · 𝑋))) |
| 19 | 18 | adantl 277 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑋 ∈ {𝑣 ∣ ∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋)} ↔ ∃𝑘 ∈ 𝐾 𝑋 = (𝑘 · 𝑋))) |
| 20 | 15, 19 | mpbird 167 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ {𝑣 ∣ ∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋)}) |
| 21 | 1, 2, 3, 8, 20 | lspsnel5a 14382 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ⊆ {𝑣 ∣ ∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋)}) |
| 22 | 3 | adantr 276 | . . . . . 6 ⊢ (((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) ∧ 𝑘 ∈ 𝐾) → 𝑊 ∈ LMod) |
| 23 | 4, 1, 2 | lspsncl 14364 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) |
| 24 | 23 | adantr 276 | . . . . . 6 ⊢ (((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) ∧ 𝑘 ∈ 𝐾) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) |
| 25 | simpr 110 | . . . . . 6 ⊢ (((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) ∧ 𝑘 ∈ 𝐾) → 𝑘 ∈ 𝐾) | |
| 26 | 4, 2 | lspsnid 14379 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ (𝑁‘{𝑋})) |
| 27 | 26 | adantr 276 | . . . . . 6 ⊢ (((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) ∧ 𝑘 ∈ 𝐾) → 𝑋 ∈ (𝑁‘{𝑋})) |
| 28 | 5, 6, 7, 1 | lssvscl 14347 | . . . . . 6 ⊢ (((𝑊 ∈ LMod ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) ∧ (𝑘 ∈ 𝐾 ∧ 𝑋 ∈ (𝑁‘{𝑋}))) → (𝑘 · 𝑋) ∈ (𝑁‘{𝑋})) |
| 29 | 22, 24, 25, 27, 28 | syl22anc 1272 | . . . . 5 ⊢ (((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) ∧ 𝑘 ∈ 𝐾) → (𝑘 · 𝑋) ∈ (𝑁‘{𝑋})) |
| 30 | eleq1a 2301 | . . . . 5 ⊢ ((𝑘 · 𝑋) ∈ (𝑁‘{𝑋}) → (𝑣 = (𝑘 · 𝑋) → 𝑣 ∈ (𝑁‘{𝑋}))) | |
| 31 | 29, 30 | syl 14 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) ∧ 𝑘 ∈ 𝐾) → (𝑣 = (𝑘 · 𝑋) → 𝑣 ∈ (𝑁‘{𝑋}))) |
| 32 | 31 | rexlimdva 2648 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋) → 𝑣 ∈ (𝑁‘{𝑋}))) |
| 33 | 32 | abssdv 3298 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → {𝑣 ∣ ∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋)} ⊆ (𝑁‘{𝑋})) |
| 34 | 21, 33 | eqssd 3241 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) = {𝑣 ∣ ∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋)}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 {cab 2215 ∃wrex 2509 {csn 3666 ‘cfv 5318 (class class class)co 6007 Basecbs 13040 Scalarcsca 13121 ·𝑠 cvsca 13122 1rcur 13930 LModclmod 14259 LSubSpclss 14324 LSpanclspn 14358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-addass 8109 ax-i2m1 8112 ax-0lt1 8113 ax-0id 8115 ax-rnegex 8116 ax-pre-ltirr 8119 ax-pre-ltadd 8123 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-pnf 8191 df-mnf 8192 df-ltxr 8194 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-5 9180 df-6 9181 df-ndx 13043 df-slot 13044 df-base 13046 df-sets 13047 df-plusg 13131 df-mulr 13132 df-sca 13134 df-vsca 13135 df-0g 13299 df-mgm 13397 df-sgrp 13443 df-mnd 13458 df-grp 13544 df-minusg 13545 df-sbg 13546 df-mgp 13892 df-ur 13931 df-ring 13969 df-lmod 14261 df-lssm 14325 df-lsp 14359 |
| This theorem is referenced by: ellspsn 14389 |
| Copyright terms: Public domain | W3C validator |