ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lspsn GIF version

Theorem lspsn 13912
Description: Span of the singleton of a vector. (Contributed by NM, 14-Jan-2014.) (Proof shortened by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspsn.f 𝐹 = (Scalar‘𝑊)
lspsn.k 𝐾 = (Base‘𝐹)
lspsn.v 𝑉 = (Base‘𝑊)
lspsn.t · = ( ·𝑠𝑊)
lspsn.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
lspsn ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) = {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)})
Distinct variable groups:   𝑘,𝐹   𝑣,𝑘,𝐾   𝑘,𝑁,𝑣   𝑘,𝑉,𝑣   𝑘,𝑊,𝑣   · ,𝑘,𝑣   𝑘,𝑋,𝑣
Allowed substitution hint:   𝐹(𝑣)

Proof of Theorem lspsn
StepHypRef Expression
1 eqid 2193 . . 3 (LSubSp‘𝑊) = (LSubSp‘𝑊)
2 lspsn.n . . 3 𝑁 = (LSpan‘𝑊)
3 simpl 109 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑊 ∈ LMod)
4 lspsn.v . . . 4 𝑉 = (Base‘𝑊)
5 lspsn.f . . . 4 𝐹 = (Scalar‘𝑊)
6 lspsn.t . . . 4 · = ( ·𝑠𝑊)
7 lspsn.k . . . 4 𝐾 = (Base‘𝐹)
84, 5, 6, 7, 1lss1d 13879 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ∈ (LSubSp‘𝑊))
9 eqid 2193 . . . . . 6 (1r𝐹) = (1r𝐹)
105, 7, 9lmod1cl 13811 . . . . 5 (𝑊 ∈ LMod → (1r𝐹) ∈ 𝐾)
114, 5, 6, 9lmodvs1 13812 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((1r𝐹) · 𝑋) = 𝑋)
1211eqcomd 2199 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑋 = ((1r𝐹) · 𝑋))
13 oveq1 5925 . . . . . 6 (𝑘 = (1r𝐹) → (𝑘 · 𝑋) = ((1r𝐹) · 𝑋))
1413rspceeqv 2882 . . . . 5 (((1r𝐹) ∈ 𝐾𝑋 = ((1r𝐹) · 𝑋)) → ∃𝑘𝐾 𝑋 = (𝑘 · 𝑋))
1510, 12, 14syl2an2r 595 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ∃𝑘𝐾 𝑋 = (𝑘 · 𝑋))
16 eqeq1 2200 . . . . . . 7 (𝑣 = 𝑋 → (𝑣 = (𝑘 · 𝑋) ↔ 𝑋 = (𝑘 · 𝑋)))
1716rexbidv 2495 . . . . . 6 (𝑣 = 𝑋 → (∃𝑘𝐾 𝑣 = (𝑘 · 𝑋) ↔ ∃𝑘𝐾 𝑋 = (𝑘 · 𝑋)))
1817elabg 2906 . . . . 5 (𝑋𝑉 → (𝑋 ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ↔ ∃𝑘𝐾 𝑋 = (𝑘 · 𝑋)))
1918adantl 277 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑋 ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ↔ ∃𝑘𝐾 𝑋 = (𝑘 · 𝑋)))
2015, 19mpbird 167 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑋 ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)})
211, 2, 3, 8, 20lspsnel5a 13906 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ⊆ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)})
223adantr 276 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ 𝑘𝐾) → 𝑊 ∈ LMod)
234, 1, 2lspsncl 13888 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
2423adantr 276 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ 𝑘𝐾) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
25 simpr 110 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ 𝑘𝐾) → 𝑘𝐾)
264, 2lspsnid 13903 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑋 ∈ (𝑁‘{𝑋}))
2726adantr 276 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ 𝑘𝐾) → 𝑋 ∈ (𝑁‘{𝑋}))
285, 6, 7, 1lssvscl 13871 . . . . . 6 (((𝑊 ∈ LMod ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) ∧ (𝑘𝐾𝑋 ∈ (𝑁‘{𝑋}))) → (𝑘 · 𝑋) ∈ (𝑁‘{𝑋}))
2922, 24, 25, 27, 28syl22anc 1250 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ 𝑘𝐾) → (𝑘 · 𝑋) ∈ (𝑁‘{𝑋}))
30 eleq1a 2265 . . . . 5 ((𝑘 · 𝑋) ∈ (𝑁‘{𝑋}) → (𝑣 = (𝑘 · 𝑋) → 𝑣 ∈ (𝑁‘{𝑋})))
3129, 30syl 14 . . . 4 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ 𝑘𝐾) → (𝑣 = (𝑘 · 𝑋) → 𝑣 ∈ (𝑁‘{𝑋})))
3231rexlimdva 2611 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (∃𝑘𝐾 𝑣 = (𝑘 · 𝑋) → 𝑣 ∈ (𝑁‘{𝑋})))
3332abssdv 3253 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ⊆ (𝑁‘{𝑋}))
3421, 33eqssd 3196 1 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) = {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  {cab 2179  wrex 2473  {csn 3618  cfv 5254  (class class class)co 5918  Basecbs 12618  Scalarcsca 12698   ·𝑠 cvsca 12699  1rcur 13455  LModclmod 13783  LSubSpclss 13848  LSpanclspn 13882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-5 9044  df-6 9045  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-plusg 12708  df-mulr 12709  df-sca 12711  df-vsca 12712  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-minusg 13076  df-sbg 13077  df-mgp 13417  df-ur 13456  df-ring 13494  df-lmod 13785  df-lssm 13849  df-lsp 13883
This theorem is referenced by:  ellspsn  13913
  Copyright terms: Public domain W3C validator