| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lspsn | GIF version | ||
| Description: Span of the singleton of a vector. (Contributed by NM, 14-Jan-2014.) (Proof shortened by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lspsn.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lspsn.k | ⊢ 𝐾 = (Base‘𝐹) |
| lspsn.v | ⊢ 𝑉 = (Base‘𝑊) |
| lspsn.t | ⊢ · = ( ·𝑠 ‘𝑊) |
| lspsn.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| Ref | Expression |
|---|---|
| lspsn | ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) = {𝑣 ∣ ∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2206 | . . 3 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
| 2 | lspsn.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 3 | simpl 109 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑊 ∈ LMod) | |
| 4 | lspsn.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 5 | lspsn.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 6 | lspsn.t | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 7 | lspsn.k | . . . 4 ⊢ 𝐾 = (Base‘𝐹) | |
| 8 | 4, 5, 6, 7, 1 | lss1d 14189 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → {𝑣 ∣ ∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋)} ∈ (LSubSp‘𝑊)) |
| 9 | eqid 2206 | . . . . . 6 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
| 10 | 5, 7, 9 | lmod1cl 14121 | . . . . 5 ⊢ (𝑊 ∈ LMod → (1r‘𝐹) ∈ 𝐾) |
| 11 | 4, 5, 6, 9 | lmodvs1 14122 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((1r‘𝐹) · 𝑋) = 𝑋) |
| 12 | 11 | eqcomd 2212 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑋 = ((1r‘𝐹) · 𝑋)) |
| 13 | oveq1 5958 | . . . . . 6 ⊢ (𝑘 = (1r‘𝐹) → (𝑘 · 𝑋) = ((1r‘𝐹) · 𝑋)) | |
| 14 | 13 | rspceeqv 2896 | . . . . 5 ⊢ (((1r‘𝐹) ∈ 𝐾 ∧ 𝑋 = ((1r‘𝐹) · 𝑋)) → ∃𝑘 ∈ 𝐾 𝑋 = (𝑘 · 𝑋)) |
| 15 | 10, 12, 14 | syl2an2r 595 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ∃𝑘 ∈ 𝐾 𝑋 = (𝑘 · 𝑋)) |
| 16 | eqeq1 2213 | . . . . . . 7 ⊢ (𝑣 = 𝑋 → (𝑣 = (𝑘 · 𝑋) ↔ 𝑋 = (𝑘 · 𝑋))) | |
| 17 | 16 | rexbidv 2508 | . . . . . 6 ⊢ (𝑣 = 𝑋 → (∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋) ↔ ∃𝑘 ∈ 𝐾 𝑋 = (𝑘 · 𝑋))) |
| 18 | 17 | elabg 2920 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → (𝑋 ∈ {𝑣 ∣ ∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋)} ↔ ∃𝑘 ∈ 𝐾 𝑋 = (𝑘 · 𝑋))) |
| 19 | 18 | adantl 277 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑋 ∈ {𝑣 ∣ ∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋)} ↔ ∃𝑘 ∈ 𝐾 𝑋 = (𝑘 · 𝑋))) |
| 20 | 15, 19 | mpbird 167 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ {𝑣 ∣ ∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋)}) |
| 21 | 1, 2, 3, 8, 20 | lspsnel5a 14216 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ⊆ {𝑣 ∣ ∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋)}) |
| 22 | 3 | adantr 276 | . . . . . 6 ⊢ (((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) ∧ 𝑘 ∈ 𝐾) → 𝑊 ∈ LMod) |
| 23 | 4, 1, 2 | lspsncl 14198 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) |
| 24 | 23 | adantr 276 | . . . . . 6 ⊢ (((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) ∧ 𝑘 ∈ 𝐾) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) |
| 25 | simpr 110 | . . . . . 6 ⊢ (((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) ∧ 𝑘 ∈ 𝐾) → 𝑘 ∈ 𝐾) | |
| 26 | 4, 2 | lspsnid 14213 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ (𝑁‘{𝑋})) |
| 27 | 26 | adantr 276 | . . . . . 6 ⊢ (((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) ∧ 𝑘 ∈ 𝐾) → 𝑋 ∈ (𝑁‘{𝑋})) |
| 28 | 5, 6, 7, 1 | lssvscl 14181 | . . . . . 6 ⊢ (((𝑊 ∈ LMod ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) ∧ (𝑘 ∈ 𝐾 ∧ 𝑋 ∈ (𝑁‘{𝑋}))) → (𝑘 · 𝑋) ∈ (𝑁‘{𝑋})) |
| 29 | 22, 24, 25, 27, 28 | syl22anc 1251 | . . . . 5 ⊢ (((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) ∧ 𝑘 ∈ 𝐾) → (𝑘 · 𝑋) ∈ (𝑁‘{𝑋})) |
| 30 | eleq1a 2278 | . . . . 5 ⊢ ((𝑘 · 𝑋) ∈ (𝑁‘{𝑋}) → (𝑣 = (𝑘 · 𝑋) → 𝑣 ∈ (𝑁‘{𝑋}))) | |
| 31 | 29, 30 | syl 14 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) ∧ 𝑘 ∈ 𝐾) → (𝑣 = (𝑘 · 𝑋) → 𝑣 ∈ (𝑁‘{𝑋}))) |
| 32 | 31 | rexlimdva 2624 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋) → 𝑣 ∈ (𝑁‘{𝑋}))) |
| 33 | 32 | abssdv 3268 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → {𝑣 ∣ ∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋)} ⊆ (𝑁‘{𝑋})) |
| 34 | 21, 33 | eqssd 3211 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) = {𝑣 ∣ ∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋)}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2177 {cab 2192 ∃wrex 2486 {csn 3634 ‘cfv 5276 (class class class)co 5951 Basecbs 12876 Scalarcsca 12956 ·𝑠 cvsca 12957 1rcur 13765 LModclmod 14093 LSubSpclss 14158 LSpanclspn 14192 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-addcom 8032 ax-addass 8034 ax-i2m1 8037 ax-0lt1 8038 ax-0id 8040 ax-rnegex 8041 ax-pre-ltirr 8044 ax-pre-ltadd 8048 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-pnf 8116 df-mnf 8117 df-ltxr 8119 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-5 9105 df-6 9106 df-ndx 12879 df-slot 12880 df-base 12882 df-sets 12883 df-plusg 12966 df-mulr 12967 df-sca 12969 df-vsca 12970 df-0g 13134 df-mgm 13232 df-sgrp 13278 df-mnd 13293 df-grp 13379 df-minusg 13380 df-sbg 13381 df-mgp 13727 df-ur 13766 df-ring 13804 df-lmod 14095 df-lssm 14159 df-lsp 14193 |
| This theorem is referenced by: ellspsn 14223 |
| Copyright terms: Public domain | W3C validator |