![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lspsn | GIF version |
Description: Span of the singleton of a vector. (Contributed by NM, 14-Jan-2014.) (Proof shortened by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lspsn.f | ⊢ 𝐹 = (Scalar‘𝑊) |
lspsn.k | ⊢ 𝐾 = (Base‘𝐹) |
lspsn.v | ⊢ 𝑉 = (Base‘𝑊) |
lspsn.t | ⊢ · = ( ·𝑠 ‘𝑊) |
lspsn.n | ⊢ 𝑁 = (LSpan‘𝑊) |
Ref | Expression |
---|---|
lspsn | ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) = {𝑣 ∣ ∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2189 | . . 3 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
2 | lspsn.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
3 | simpl 109 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑊 ∈ LMod) | |
4 | lspsn.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
5 | lspsn.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
6 | lspsn.t | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
7 | lspsn.k | . . . 4 ⊢ 𝐾 = (Base‘𝐹) | |
8 | 4, 5, 6, 7, 1 | lss1d 13696 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → {𝑣 ∣ ∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋)} ∈ (LSubSp‘𝑊)) |
9 | eqid 2189 | . . . . . 6 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
10 | 5, 7, 9 | lmod1cl 13628 | . . . . 5 ⊢ (𝑊 ∈ LMod → (1r‘𝐹) ∈ 𝐾) |
11 | 4, 5, 6, 9 | lmodvs1 13629 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((1r‘𝐹) · 𝑋) = 𝑋) |
12 | 11 | eqcomd 2195 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑋 = ((1r‘𝐹) · 𝑋)) |
13 | oveq1 5902 | . . . . . 6 ⊢ (𝑘 = (1r‘𝐹) → (𝑘 · 𝑋) = ((1r‘𝐹) · 𝑋)) | |
14 | 13 | rspceeqv 2874 | . . . . 5 ⊢ (((1r‘𝐹) ∈ 𝐾 ∧ 𝑋 = ((1r‘𝐹) · 𝑋)) → ∃𝑘 ∈ 𝐾 𝑋 = (𝑘 · 𝑋)) |
15 | 10, 12, 14 | syl2an2r 595 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ∃𝑘 ∈ 𝐾 𝑋 = (𝑘 · 𝑋)) |
16 | eqeq1 2196 | . . . . . . 7 ⊢ (𝑣 = 𝑋 → (𝑣 = (𝑘 · 𝑋) ↔ 𝑋 = (𝑘 · 𝑋))) | |
17 | 16 | rexbidv 2491 | . . . . . 6 ⊢ (𝑣 = 𝑋 → (∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋) ↔ ∃𝑘 ∈ 𝐾 𝑋 = (𝑘 · 𝑋))) |
18 | 17 | elabg 2898 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → (𝑋 ∈ {𝑣 ∣ ∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋)} ↔ ∃𝑘 ∈ 𝐾 𝑋 = (𝑘 · 𝑋))) |
19 | 18 | adantl 277 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑋 ∈ {𝑣 ∣ ∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋)} ↔ ∃𝑘 ∈ 𝐾 𝑋 = (𝑘 · 𝑋))) |
20 | 15, 19 | mpbird 167 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ {𝑣 ∣ ∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋)}) |
21 | 1, 2, 3, 8, 20 | lspsnel5a 13723 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ⊆ {𝑣 ∣ ∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋)}) |
22 | 3 | adantr 276 | . . . . . 6 ⊢ (((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) ∧ 𝑘 ∈ 𝐾) → 𝑊 ∈ LMod) |
23 | 4, 1, 2 | lspsncl 13705 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) |
24 | 23 | adantr 276 | . . . . . 6 ⊢ (((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) ∧ 𝑘 ∈ 𝐾) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) |
25 | simpr 110 | . . . . . 6 ⊢ (((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) ∧ 𝑘 ∈ 𝐾) → 𝑘 ∈ 𝐾) | |
26 | 4, 2 | lspsnid 13720 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ (𝑁‘{𝑋})) |
27 | 26 | adantr 276 | . . . . . 6 ⊢ (((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) ∧ 𝑘 ∈ 𝐾) → 𝑋 ∈ (𝑁‘{𝑋})) |
28 | 5, 6, 7, 1 | lssvscl 13688 | . . . . . 6 ⊢ (((𝑊 ∈ LMod ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) ∧ (𝑘 ∈ 𝐾 ∧ 𝑋 ∈ (𝑁‘{𝑋}))) → (𝑘 · 𝑋) ∈ (𝑁‘{𝑋})) |
29 | 22, 24, 25, 27, 28 | syl22anc 1250 | . . . . 5 ⊢ (((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) ∧ 𝑘 ∈ 𝐾) → (𝑘 · 𝑋) ∈ (𝑁‘{𝑋})) |
30 | eleq1a 2261 | . . . . 5 ⊢ ((𝑘 · 𝑋) ∈ (𝑁‘{𝑋}) → (𝑣 = (𝑘 · 𝑋) → 𝑣 ∈ (𝑁‘{𝑋}))) | |
31 | 29, 30 | syl 14 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) ∧ 𝑘 ∈ 𝐾) → (𝑣 = (𝑘 · 𝑋) → 𝑣 ∈ (𝑁‘{𝑋}))) |
32 | 31 | rexlimdva 2607 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋) → 𝑣 ∈ (𝑁‘{𝑋}))) |
33 | 32 | abssdv 3244 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → {𝑣 ∣ ∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋)} ⊆ (𝑁‘{𝑋})) |
34 | 21, 33 | eqssd 3187 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) = {𝑣 ∣ ∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋)}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2160 {cab 2175 ∃wrex 2469 {csn 3607 ‘cfv 5235 (class class class)co 5895 Basecbs 12511 Scalarcsca 12589 ·𝑠 cvsca 12590 1rcur 13310 LModclmod 13600 LSubSpclss 13665 LSpanclspn 13699 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-cnex 7931 ax-resscn 7932 ax-1cn 7933 ax-1re 7934 ax-icn 7935 ax-addcl 7936 ax-addrcl 7937 ax-mulcl 7938 ax-addcom 7940 ax-addass 7942 ax-i2m1 7945 ax-0lt1 7946 ax-0id 7948 ax-rnegex 7949 ax-pre-ltirr 7952 ax-pre-ltadd 7956 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-riota 5851 df-ov 5898 df-oprab 5899 df-mpo 5900 df-1st 6164 df-2nd 6165 df-pnf 8023 df-mnf 8024 df-ltxr 8026 df-inn 8949 df-2 9007 df-3 9008 df-4 9009 df-5 9010 df-6 9011 df-ndx 12514 df-slot 12515 df-base 12517 df-sets 12518 df-plusg 12599 df-mulr 12600 df-sca 12602 df-vsca 12603 df-0g 12760 df-mgm 12829 df-sgrp 12862 df-mnd 12875 df-grp 12945 df-minusg 12946 df-sbg 12947 df-mgp 13272 df-ur 13311 df-ring 13349 df-lmod 13602 df-lssm 13666 df-lsp 13700 |
This theorem is referenced by: lspsnel 13730 |
Copyright terms: Public domain | W3C validator |