ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lspsn GIF version

Theorem lspsn 13972
Description: Span of the singleton of a vector. (Contributed by NM, 14-Jan-2014.) (Proof shortened by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspsn.f 𝐹 = (Scalar‘𝑊)
lspsn.k 𝐾 = (Base‘𝐹)
lspsn.v 𝑉 = (Base‘𝑊)
lspsn.t · = ( ·𝑠𝑊)
lspsn.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
lspsn ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) = {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)})
Distinct variable groups:   𝑘,𝐹   𝑣,𝑘,𝐾   𝑘,𝑁,𝑣   𝑘,𝑉,𝑣   𝑘,𝑊,𝑣   · ,𝑘,𝑣   𝑘,𝑋,𝑣
Allowed substitution hint:   𝐹(𝑣)

Proof of Theorem lspsn
StepHypRef Expression
1 eqid 2196 . . 3 (LSubSp‘𝑊) = (LSubSp‘𝑊)
2 lspsn.n . . 3 𝑁 = (LSpan‘𝑊)
3 simpl 109 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑊 ∈ LMod)
4 lspsn.v . . . 4 𝑉 = (Base‘𝑊)
5 lspsn.f . . . 4 𝐹 = (Scalar‘𝑊)
6 lspsn.t . . . 4 · = ( ·𝑠𝑊)
7 lspsn.k . . . 4 𝐾 = (Base‘𝐹)
84, 5, 6, 7, 1lss1d 13939 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ∈ (LSubSp‘𝑊))
9 eqid 2196 . . . . . 6 (1r𝐹) = (1r𝐹)
105, 7, 9lmod1cl 13871 . . . . 5 (𝑊 ∈ LMod → (1r𝐹) ∈ 𝐾)
114, 5, 6, 9lmodvs1 13872 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((1r𝐹) · 𝑋) = 𝑋)
1211eqcomd 2202 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑋 = ((1r𝐹) · 𝑋))
13 oveq1 5929 . . . . . 6 (𝑘 = (1r𝐹) → (𝑘 · 𝑋) = ((1r𝐹) · 𝑋))
1413rspceeqv 2886 . . . . 5 (((1r𝐹) ∈ 𝐾𝑋 = ((1r𝐹) · 𝑋)) → ∃𝑘𝐾 𝑋 = (𝑘 · 𝑋))
1510, 12, 14syl2an2r 595 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ∃𝑘𝐾 𝑋 = (𝑘 · 𝑋))
16 eqeq1 2203 . . . . . . 7 (𝑣 = 𝑋 → (𝑣 = (𝑘 · 𝑋) ↔ 𝑋 = (𝑘 · 𝑋)))
1716rexbidv 2498 . . . . . 6 (𝑣 = 𝑋 → (∃𝑘𝐾 𝑣 = (𝑘 · 𝑋) ↔ ∃𝑘𝐾 𝑋 = (𝑘 · 𝑋)))
1817elabg 2910 . . . . 5 (𝑋𝑉 → (𝑋 ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ↔ ∃𝑘𝐾 𝑋 = (𝑘 · 𝑋)))
1918adantl 277 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑋 ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ↔ ∃𝑘𝐾 𝑋 = (𝑘 · 𝑋)))
2015, 19mpbird 167 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑋 ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)})
211, 2, 3, 8, 20lspsnel5a 13966 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ⊆ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)})
223adantr 276 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ 𝑘𝐾) → 𝑊 ∈ LMod)
234, 1, 2lspsncl 13948 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
2423adantr 276 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ 𝑘𝐾) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
25 simpr 110 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ 𝑘𝐾) → 𝑘𝐾)
264, 2lspsnid 13963 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑋 ∈ (𝑁‘{𝑋}))
2726adantr 276 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ 𝑘𝐾) → 𝑋 ∈ (𝑁‘{𝑋}))
285, 6, 7, 1lssvscl 13931 . . . . . 6 (((𝑊 ∈ LMod ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) ∧ (𝑘𝐾𝑋 ∈ (𝑁‘{𝑋}))) → (𝑘 · 𝑋) ∈ (𝑁‘{𝑋}))
2922, 24, 25, 27, 28syl22anc 1250 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ 𝑘𝐾) → (𝑘 · 𝑋) ∈ (𝑁‘{𝑋}))
30 eleq1a 2268 . . . . 5 ((𝑘 · 𝑋) ∈ (𝑁‘{𝑋}) → (𝑣 = (𝑘 · 𝑋) → 𝑣 ∈ (𝑁‘{𝑋})))
3129, 30syl 14 . . . 4 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ 𝑘𝐾) → (𝑣 = (𝑘 · 𝑋) → 𝑣 ∈ (𝑁‘{𝑋})))
3231rexlimdva 2614 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (∃𝑘𝐾 𝑣 = (𝑘 · 𝑋) → 𝑣 ∈ (𝑁‘{𝑋})))
3332abssdv 3257 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ⊆ (𝑁‘{𝑋}))
3421, 33eqssd 3200 1 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) = {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  {cab 2182  wrex 2476  {csn 3622  cfv 5258  (class class class)co 5922  Basecbs 12678  Scalarcsca 12758   ·𝑠 cvsca 12759  1rcur 13515  LModclmod 13843  LSubSpclss 13908  LSpanclspn 13942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-5 9052  df-6 9053  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-plusg 12768  df-mulr 12769  df-sca 12771  df-vsca 12772  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136  df-sbg 13137  df-mgp 13477  df-ur 13516  df-ring 13554  df-lmod 13845  df-lssm 13909  df-lsp 13943
This theorem is referenced by:  ellspsn  13973
  Copyright terms: Public domain W3C validator