![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > basm | GIF version |
Description: A structure whose base is inhabited is inhabited. (Contributed by Jim Kingdon, 14-Jun-2025.) |
Ref | Expression |
---|---|
basm.b | ⊢ 𝐵 = (Base‘𝐺) |
Ref | Expression |
---|---|
basm | ⊢ (𝐴 ∈ 𝐵 → ∃𝑗 𝑗 ∈ 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . 3 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ 𝐵) | |
2 | basm.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
3 | baseid 12675 | . . . . 5 ⊢ Base = Slot (Base‘ndx) | |
4 | 2 | basmex 12680 | . . . . 5 ⊢ (𝐴 ∈ 𝐵 → 𝐺 ∈ V) |
5 | basendxnn 12677 | . . . . . 6 ⊢ (Base‘ndx) ∈ ℕ | |
6 | 5 | a1i 9 | . . . . 5 ⊢ (𝐴 ∈ 𝐵 → (Base‘ndx) ∈ ℕ) |
7 | 3, 4, 6 | strnfvnd 12641 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → (Base‘𝐺) = (𝐺‘(Base‘ndx))) |
8 | 2, 7 | eqtrid 2238 | . . 3 ⊢ (𝐴 ∈ 𝐵 → 𝐵 = (𝐺‘(Base‘ndx))) |
9 | 1, 8 | eleqtrd 2272 | . 2 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ (𝐺‘(Base‘ndx))) |
10 | elfvm 5588 | . 2 ⊢ (𝐴 ∈ (𝐺‘(Base‘ndx)) → ∃𝑗 𝑗 ∈ 𝐺) | |
11 | 9, 10 | syl 14 | 1 ⊢ (𝐴 ∈ 𝐵 → ∃𝑗 𝑗 ∈ 𝐺) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∃wex 1503 ∈ wcel 2164 Vcvv 2760 ‘cfv 5255 ℕcn 8984 ndxcnx 12618 Basecbs 12621 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-cnex 7965 ax-resscn 7966 ax-1re 7968 ax-addrcl 7971 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2987 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-iota 5216 df-fun 5257 df-fn 5258 df-fv 5263 df-inn 8985 df-ndx 12624 df-slot 12625 df-base 12627 |
This theorem is referenced by: relelbasov 12683 |
Copyright terms: Public domain | W3C validator |