| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > basm | GIF version | ||
| Description: A structure whose base is inhabited is inhabited. (Contributed by Jim Kingdon, 14-Jun-2025.) |
| Ref | Expression |
|---|---|
| basm.b | ⊢ 𝐵 = (Base‘𝐺) |
| Ref | Expression |
|---|---|
| basm | ⊢ (𝐴 ∈ 𝐵 → ∃𝑗 𝑗 ∈ 𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . . 3 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ 𝐵) | |
| 2 | basm.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | baseid 13052 | . . . . 5 ⊢ Base = Slot (Base‘ndx) | |
| 4 | 2 | basmex 13058 | . . . . 5 ⊢ (𝐴 ∈ 𝐵 → 𝐺 ∈ V) |
| 5 | basendxnn 13054 | . . . . . 6 ⊢ (Base‘ndx) ∈ ℕ | |
| 6 | 5 | a1i 9 | . . . . 5 ⊢ (𝐴 ∈ 𝐵 → (Base‘ndx) ∈ ℕ) |
| 7 | 3, 4, 6 | strnfvnd 13018 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → (Base‘𝐺) = (𝐺‘(Base‘ndx))) |
| 8 | 2, 7 | eqtrid 2254 | . . 3 ⊢ (𝐴 ∈ 𝐵 → 𝐵 = (𝐺‘(Base‘ndx))) |
| 9 | 1, 8 | eleqtrd 2288 | . 2 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ (𝐺‘(Base‘ndx))) |
| 10 | elfvm 5636 | . 2 ⊢ (𝐴 ∈ (𝐺‘(Base‘ndx)) → ∃𝑗 𝑗 ∈ 𝐺) | |
| 11 | 9, 10 | syl 14 | 1 ⊢ (𝐴 ∈ 𝐵 → ∃𝑗 𝑗 ∈ 𝐺) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1375 ∃wex 1518 ∈ wcel 2180 Vcvv 2779 ‘cfv 5294 ℕcn 9078 ndxcnx 12995 Basecbs 12998 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-cnex 8058 ax-resscn 8059 ax-1re 8061 ax-addrcl 8064 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-sbc 3009 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-iota 5254 df-fun 5296 df-fn 5297 df-fv 5302 df-inn 9079 df-ndx 13001 df-slot 13002 df-base 13004 |
| This theorem is referenced by: relelbasov 13061 |
| Copyright terms: Public domain | W3C validator |