ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  basm GIF version

Theorem basm 12937
Description: A structure whose base is inhabited is inhabited. (Contributed by Jim Kingdon, 14-Jun-2025.)
Hypothesis
Ref Expression
basm.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
basm (𝐴𝐵 → ∃𝑗 𝑗𝐺)
Distinct variable group:   𝑗,𝐺
Allowed substitution hints:   𝐴(𝑗)   𝐵(𝑗)

Proof of Theorem basm
StepHypRef Expression
1 id 19 . . 3 (𝐴𝐵𝐴𝐵)
2 basm.b . . . 4 𝐵 = (Base‘𝐺)
3 baseid 12930 . . . . 5 Base = Slot (Base‘ndx)
42basmex 12935 . . . . 5 (𝐴𝐵𝐺 ∈ V)
5 basendxnn 12932 . . . . . 6 (Base‘ndx) ∈ ℕ
65a1i 9 . . . . 5 (𝐴𝐵 → (Base‘ndx) ∈ ℕ)
73, 4, 6strnfvnd 12896 . . . 4 (𝐴𝐵 → (Base‘𝐺) = (𝐺‘(Base‘ndx)))
82, 7eqtrid 2251 . . 3 (𝐴𝐵𝐵 = (𝐺‘(Base‘ndx)))
91, 8eleqtrd 2285 . 2 (𝐴𝐵𝐴 ∈ (𝐺‘(Base‘ndx)))
10 elfvm 5616 . 2 (𝐴 ∈ (𝐺‘(Base‘ndx)) → ∃𝑗 𝑗𝐺)
119, 10syl 14 1 (𝐴𝐵 → ∃𝑗 𝑗𝐺)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wex 1516  wcel 2177  Vcvv 2773  cfv 5276  cn 9043  ndxcnx 12873  Basecbs 12876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-cnex 8023  ax-resscn 8024  ax-1re 8026  ax-addrcl 8029
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3000  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-iota 5237  df-fun 5278  df-fn 5279  df-fv 5284  df-inn 9044  df-ndx 12879  df-slot 12880  df-base 12882
This theorem is referenced by:  relelbasov  12938
  Copyright terms: Public domain W3C validator