ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  basm GIF version

Theorem basm 13102
Description: A structure whose base is inhabited is inhabited. (Contributed by Jim Kingdon, 14-Jun-2025.)
Hypothesis
Ref Expression
basm.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
basm (𝐴𝐵 → ∃𝑗 𝑗𝐺)
Distinct variable group:   𝑗,𝐺
Allowed substitution hints:   𝐴(𝑗)   𝐵(𝑗)

Proof of Theorem basm
StepHypRef Expression
1 id 19 . . 3 (𝐴𝐵𝐴𝐵)
2 basm.b . . . 4 𝐵 = (Base‘𝐺)
3 baseid 13094 . . . . 5 Base = Slot (Base‘ndx)
42basmex 13100 . . . . 5 (𝐴𝐵𝐺 ∈ V)
5 basendxnn 13096 . . . . . 6 (Base‘ndx) ∈ ℕ
65a1i 9 . . . . 5 (𝐴𝐵 → (Base‘ndx) ∈ ℕ)
73, 4, 6strnfvnd 13060 . . . 4 (𝐴𝐵 → (Base‘𝐺) = (𝐺‘(Base‘ndx)))
82, 7eqtrid 2274 . . 3 (𝐴𝐵𝐵 = (𝐺‘(Base‘ndx)))
91, 8eleqtrd 2308 . 2 (𝐴𝐵𝐴 ∈ (𝐺‘(Base‘ndx)))
10 elfvm 5662 . 2 (𝐴 ∈ (𝐺‘(Base‘ndx)) → ∃𝑗 𝑗𝐺)
119, 10syl 14 1 (𝐴𝐵 → ∃𝑗 𝑗𝐺)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wex 1538  wcel 2200  Vcvv 2799  cfv 5318  cn 9118  ndxcnx 13037  Basecbs 13040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-cnex 8098  ax-resscn 8099  ax-1re 8101  ax-addrcl 8104
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326  df-inn 9119  df-ndx 13043  df-slot 13044  df-base 13046
This theorem is referenced by:  relelbasov  13103
  Copyright terms: Public domain W3C validator