ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  basm GIF version

Theorem basm 13060
Description: A structure whose base is inhabited is inhabited. (Contributed by Jim Kingdon, 14-Jun-2025.)
Hypothesis
Ref Expression
basm.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
basm (𝐴𝐵 → ∃𝑗 𝑗𝐺)
Distinct variable group:   𝑗,𝐺
Allowed substitution hints:   𝐴(𝑗)   𝐵(𝑗)

Proof of Theorem basm
StepHypRef Expression
1 id 19 . . 3 (𝐴𝐵𝐴𝐵)
2 basm.b . . . 4 𝐵 = (Base‘𝐺)
3 baseid 13052 . . . . 5 Base = Slot (Base‘ndx)
42basmex 13058 . . . . 5 (𝐴𝐵𝐺 ∈ V)
5 basendxnn 13054 . . . . . 6 (Base‘ndx) ∈ ℕ
65a1i 9 . . . . 5 (𝐴𝐵 → (Base‘ndx) ∈ ℕ)
73, 4, 6strnfvnd 13018 . . . 4 (𝐴𝐵 → (Base‘𝐺) = (𝐺‘(Base‘ndx)))
82, 7eqtrid 2254 . . 3 (𝐴𝐵𝐵 = (𝐺‘(Base‘ndx)))
91, 8eleqtrd 2288 . 2 (𝐴𝐵𝐴 ∈ (𝐺‘(Base‘ndx)))
10 elfvm 5636 . 2 (𝐴 ∈ (𝐺‘(Base‘ndx)) → ∃𝑗 𝑗𝐺)
119, 10syl 14 1 (𝐴𝐵 → ∃𝑗 𝑗𝐺)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1375  wex 1518  wcel 2180  Vcvv 2779  cfv 5294  cn 9078  ndxcnx 12995  Basecbs 12998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-cnex 8058  ax-resscn 8059  ax-1re 8061  ax-addrcl 8064
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-v 2781  df-sbc 3009  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-iota 5254  df-fun 5296  df-fn 5297  df-fv 5302  df-inn 9079  df-ndx 13001  df-slot 13002  df-base 13004
This theorem is referenced by:  relelbasov  13061
  Copyright terms: Public domain W3C validator