| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > upgredg2vtx | GIF version | ||
| Description: For a vertex incident to an edge there is another vertex incident to the edge in a pseudograph. (Contributed by AV, 18-Oct-2020.) (Revised by AV, 5-Dec-2020.) |
| Ref | Expression |
|---|---|
| upgredg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| upgredg.e | ⊢ 𝐸 = (Edg‘𝐺) |
| Ref | Expression |
|---|---|
| upgredg2vtx | ⊢ ((𝐺 ∈ UPGraph ∧ 𝐶 ∈ 𝐸 ∧ 𝐴 ∈ 𝐶) → ∃𝑏 ∈ 𝑉 𝐶 = {𝐴, 𝑏}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgredg.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | upgredg.e | . . . 4 ⊢ 𝐸 = (Edg‘𝐺) | |
| 3 | 1, 2 | upgredg 15936 | . . 3 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐶 ∈ 𝐸) → ∃𝑎 ∈ 𝑉 ∃𝑐 ∈ 𝑉 𝐶 = {𝑎, 𝑐}) |
| 4 | 3 | 3adant3 1041 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐶 ∈ 𝐸 ∧ 𝐴 ∈ 𝐶) → ∃𝑎 ∈ 𝑉 ∃𝑐 ∈ 𝑉 𝐶 = {𝑎, 𝑐}) |
| 5 | elpr2elpr 3853 | . . . . . . 7 ⊢ ((𝑎 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ∧ 𝐴 ∈ {𝑎, 𝑐}) → ∃𝑏 ∈ 𝑉 {𝑎, 𝑐} = {𝐴, 𝑏}) | |
| 6 | 5 | 3expia 1229 | . . . . . 6 ⊢ ((𝑎 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) → (𝐴 ∈ {𝑎, 𝑐} → ∃𝑏 ∈ 𝑉 {𝑎, 𝑐} = {𝐴, 𝑏})) |
| 7 | eleq2 2293 | . . . . . . 7 ⊢ (𝐶 = {𝑎, 𝑐} → (𝐴 ∈ 𝐶 ↔ 𝐴 ∈ {𝑎, 𝑐})) | |
| 8 | eqeq1 2236 | . . . . . . . 8 ⊢ (𝐶 = {𝑎, 𝑐} → (𝐶 = {𝐴, 𝑏} ↔ {𝑎, 𝑐} = {𝐴, 𝑏})) | |
| 9 | 8 | rexbidv 2531 | . . . . . . 7 ⊢ (𝐶 = {𝑎, 𝑐} → (∃𝑏 ∈ 𝑉 𝐶 = {𝐴, 𝑏} ↔ ∃𝑏 ∈ 𝑉 {𝑎, 𝑐} = {𝐴, 𝑏})) |
| 10 | 7, 9 | imbi12d 234 | . . . . . 6 ⊢ (𝐶 = {𝑎, 𝑐} → ((𝐴 ∈ 𝐶 → ∃𝑏 ∈ 𝑉 𝐶 = {𝐴, 𝑏}) ↔ (𝐴 ∈ {𝑎, 𝑐} → ∃𝑏 ∈ 𝑉 {𝑎, 𝑐} = {𝐴, 𝑏}))) |
| 11 | 6, 10 | imbitrrid 156 | . . . . 5 ⊢ (𝐶 = {𝑎, 𝑐} → ((𝑎 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) → (𝐴 ∈ 𝐶 → ∃𝑏 ∈ 𝑉 𝐶 = {𝐴, 𝑏}))) |
| 12 | 11 | com13 80 | . . . 4 ⊢ (𝐴 ∈ 𝐶 → ((𝑎 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) → (𝐶 = {𝑎, 𝑐} → ∃𝑏 ∈ 𝑉 𝐶 = {𝐴, 𝑏}))) |
| 13 | 12 | 3ad2ant3 1044 | . . 3 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐶 ∈ 𝐸 ∧ 𝐴 ∈ 𝐶) → ((𝑎 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) → (𝐶 = {𝑎, 𝑐} → ∃𝑏 ∈ 𝑉 𝐶 = {𝐴, 𝑏}))) |
| 14 | 13 | rexlimdvv 2655 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐶 ∈ 𝐸 ∧ 𝐴 ∈ 𝐶) → (∃𝑎 ∈ 𝑉 ∃𝑐 ∈ 𝑉 𝐶 = {𝑎, 𝑐} → ∃𝑏 ∈ 𝑉 𝐶 = {𝐴, 𝑏})) |
| 15 | 4, 14 | mpd 13 | 1 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐶 ∈ 𝐸 ∧ 𝐴 ∈ 𝐶) → ∃𝑏 ∈ 𝑉 𝐶 = {𝐴, 𝑏}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 ∃wrex 2509 {cpr 3667 ‘cfv 5317 Vtxcvtx 15807 Edgcedg 15852 UPGraphcupgr 15885 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-suc 4461 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-1o 6560 df-2o 6561 df-en 6886 df-sub 8315 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-5 9168 df-6 9169 df-7 9170 df-8 9171 df-9 9172 df-n0 9366 df-dec 9575 df-ndx 13030 df-slot 13031 df-base 13033 df-edgf 15800 df-vtx 15809 df-iedg 15810 df-edg 15853 df-upgren 15887 |
| This theorem is referenced by: usgredg2vtx 16009 uspgredg2vtxeu 16010 |
| Copyright terms: Public domain | W3C validator |