![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqtr2di | GIF version |
Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
Ref | Expression |
---|---|
eqtr2di.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
eqtr2di.2 | ⊢ 𝐵 = 𝐶 |
Ref | Expression |
---|---|
eqtr2di | ⊢ (𝜑 → 𝐶 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr2di.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | eqtr2di.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
3 | 1, 2 | eqtrdi 2226 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) |
4 | 3 | eqcomd 2183 | 1 ⊢ (𝜑 → 𝐶 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-4 1510 ax-17 1526 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-cleq 2170 |
This theorem is referenced by: eqtr4id 2229 elxp4 5118 elxp5 5119 fo1stresm 6164 fo2ndresm 6165 eloprabi 6199 fo2ndf 6230 xpsnen 6823 xpassen 6832 ac6sfi 6900 undifdc 6925 ine0 8353 nn0n0n1ge2 9325 fzval2 10013 fseq1p1m1 10096 fsum2dlemstep 11444 modfsummodlemstep 11467 fprod2dlemstep 11632 ef4p 11704 sin01bnd 11767 odd2np1 11880 sqpweven 12177 2sqpwodd 12178 psmetdmdm 13909 xmetdmdm 13941 dveflem 14272 reeff1oleme 14278 abssinper 14352 lgseisenlem1 14535 |
Copyright terms: Public domain | W3C validator |