![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqtr2di | GIF version |
Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
Ref | Expression |
---|---|
eqtr2di.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
eqtr2di.2 | ⊢ 𝐵 = 𝐶 |
Ref | Expression |
---|---|
eqtr2di | ⊢ (𝜑 → 𝐶 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr2di.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | eqtr2di.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
3 | 1, 2 | eqtrdi 2242 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) |
4 | 3 | eqcomd 2199 | 1 ⊢ (𝜑 → 𝐶 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-4 1521 ax-17 1537 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 |
This theorem is referenced by: eqtr4id 2245 elxp4 5153 elxp5 5154 fo1stresm 6214 fo2ndresm 6215 eloprabi 6249 fo2ndf 6280 xpsnen 6875 xpassen 6884 ac6sfi 6954 undifdc 6980 ine0 8413 nn0n0n1ge2 9387 fzval2 10077 fseq1p1m1 10160 fsum2dlemstep 11577 modfsummodlemstep 11600 fprod2dlemstep 11765 ef4p 11837 sin01bnd 11900 odd2np1 12014 sqpweven 12313 2sqpwodd 12314 psmetdmdm 14492 xmetdmdm 14524 dveflem 14872 reeff1oleme 14907 abssinper 14981 lgseisenlem1 15186 |
Copyright terms: Public domain | W3C validator |