Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqtr2di | GIF version |
Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
Ref | Expression |
---|---|
eqtr2di.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
eqtr2di.2 | ⊢ 𝐵 = 𝐶 |
Ref | Expression |
---|---|
eqtr2di | ⊢ (𝜑 → 𝐶 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr2di.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | eqtr2di.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
3 | 1, 2 | eqtrdi 2219 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) |
4 | 3 | eqcomd 2176 | 1 ⊢ (𝜑 → 𝐶 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-4 1503 ax-17 1519 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 |
This theorem is referenced by: eqtr4id 2222 elxp4 5098 elxp5 5099 fo1stresm 6140 fo2ndresm 6141 eloprabi 6175 fo2ndf 6206 xpsnen 6799 xpassen 6808 ac6sfi 6876 undifdc 6901 ine0 8313 nn0n0n1ge2 9282 fzval2 9968 fseq1p1m1 10050 fsum2dlemstep 11397 modfsummodlemstep 11420 fprod2dlemstep 11585 ef4p 11657 sin01bnd 11720 odd2np1 11832 sqpweven 12129 2sqpwodd 12130 psmetdmdm 13118 xmetdmdm 13150 dveflem 13481 reeff1oleme 13487 abssinper 13561 |
Copyright terms: Public domain | W3C validator |