| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr2di | GIF version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
| Ref | Expression |
|---|---|
| eqtr2di.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| eqtr2di.2 | ⊢ 𝐵 = 𝐶 |
| Ref | Expression |
|---|---|
| eqtr2di | ⊢ (𝜑 → 𝐶 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr2di.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | eqtr2di.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
| 3 | 1, 2 | eqtrdi 2253 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) |
| 4 | 3 | eqcomd 2210 | 1 ⊢ (𝜑 → 𝐶 = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-4 1532 ax-17 1548 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-cleq 2197 |
| This theorem is referenced by: eqtr4id 2256 elxp4 5169 elxp5 5170 fo1stresm 6246 fo2ndresm 6247 eloprabi 6281 fo2ndf 6312 xpsnen 6915 xpassen 6924 ac6sfi 6994 undifdc 7020 ine0 8465 nn0n0n1ge2 9442 fzval2 10132 fseq1p1m1 10215 fsum2dlemstep 11687 modfsummodlemstep 11710 fprod2dlemstep 11875 ef4p 11947 sin01bnd 12010 odd2np1 12126 sqpweven 12439 2sqpwodd 12440 psmetdmdm 14738 xmetdmdm 14770 dveflem 15140 reeff1oleme 15186 abssinper 15260 lgseisenlem1 15489 |
| Copyright terms: Public domain | W3C validator |