| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr2di | GIF version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
| Ref | Expression |
|---|---|
| eqtr2di.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| eqtr2di.2 | ⊢ 𝐵 = 𝐶 |
| Ref | Expression |
|---|---|
| eqtr2di | ⊢ (𝜑 → 𝐶 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr2di.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | eqtr2di.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
| 3 | 1, 2 | eqtrdi 2253 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) |
| 4 | 3 | eqcomd 2210 | 1 ⊢ (𝜑 → 𝐶 = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-4 1532 ax-17 1548 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-cleq 2197 |
| This theorem is referenced by: eqtr4id 2256 elxp4 5167 elxp5 5168 fo1stresm 6237 fo2ndresm 6238 eloprabi 6272 fo2ndf 6303 xpsnen 6898 xpassen 6907 ac6sfi 6977 undifdc 7003 ine0 8448 nn0n0n1ge2 9425 fzval2 10115 fseq1p1m1 10198 fsum2dlemstep 11664 modfsummodlemstep 11687 fprod2dlemstep 11852 ef4p 11924 sin01bnd 11987 odd2np1 12103 sqpweven 12416 2sqpwodd 12417 psmetdmdm 14714 xmetdmdm 14746 dveflem 15116 reeff1oleme 15162 abssinper 15236 lgseisenlem1 15465 |
| Copyright terms: Public domain | W3C validator |