| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr2di | GIF version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
| Ref | Expression |
|---|---|
| eqtr2di.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| eqtr2di.2 | ⊢ 𝐵 = 𝐶 |
| Ref | Expression |
|---|---|
| eqtr2di | ⊢ (𝜑 → 𝐶 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr2di.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | eqtr2di.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
| 3 | 1, 2 | eqtrdi 2278 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) |
| 4 | 3 | eqcomd 2235 | 1 ⊢ (𝜑 → 𝐶 = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 |
| This theorem is referenced by: eqtr4id 2281 elpr2elpr 3853 elxp4 5215 elxp5 5216 fo1stresm 6305 fo2ndresm 6306 eloprabi 6340 fo2ndf 6371 xpsnen 6976 xpassen 6985 ac6sfi 7056 undifdc 7082 ine0 8536 nn0n0n1ge2 9513 fzval2 10203 fseq1p1m1 10286 fsum2dlemstep 11940 modfsummodlemstep 11963 fprod2dlemstep 12128 ef4p 12200 sin01bnd 12263 odd2np1 12379 sqpweven 12692 2sqpwodd 12693 psmetdmdm 14992 xmetdmdm 15024 dveflem 15394 reeff1oleme 15440 abssinper 15514 lgseisenlem1 15743 |
| Copyright terms: Public domain | W3C validator |