ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqtr2di GIF version

Theorem eqtr2di 2246
Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.)
Hypotheses
Ref Expression
eqtr2di.1 (𝜑𝐴 = 𝐵)
eqtr2di.2 𝐵 = 𝐶
Assertion
Ref Expression
eqtr2di (𝜑𝐶 = 𝐴)

Proof of Theorem eqtr2di
StepHypRef Expression
1 eqtr2di.1 . . 3 (𝜑𝐴 = 𝐵)
2 eqtr2di.2 . . 3 𝐵 = 𝐶
31, 2eqtrdi 2245 . 2 (𝜑𝐴 = 𝐶)
43eqcomd 2202 1 (𝜑𝐶 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-4 1524  ax-17 1540  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-cleq 2189
This theorem is referenced by:  eqtr4id  2248  elxp4  5158  elxp5  5159  fo1stresm  6228  fo2ndresm  6229  eloprabi  6263  fo2ndf  6294  xpsnen  6889  xpassen  6898  ac6sfi  6968  undifdc  6994  ine0  8439  nn0n0n1ge2  9415  fzval2  10105  fseq1p1m1  10188  fsum2dlemstep  11618  modfsummodlemstep  11641  fprod2dlemstep  11806  ef4p  11878  sin01bnd  11941  odd2np1  12057  sqpweven  12370  2sqpwodd  12371  psmetdmdm  14668  xmetdmdm  14700  dveflem  15070  reeff1oleme  15116  abssinper  15190  lgseisenlem1  15419
  Copyright terms: Public domain W3C validator