| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr2di | GIF version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
| Ref | Expression |
|---|---|
| eqtr2di.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| eqtr2di.2 | ⊢ 𝐵 = 𝐶 |
| Ref | Expression |
|---|---|
| eqtr2di | ⊢ (𝜑 → 𝐶 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr2di.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | eqtr2di.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
| 3 | 1, 2 | eqtrdi 2255 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) |
| 4 | 3 | eqcomd 2212 | 1 ⊢ (𝜑 → 𝐶 = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-4 1534 ax-17 1550 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-cleq 2199 |
| This theorem is referenced by: eqtr4id 2258 elxp4 5179 elxp5 5180 fo1stresm 6260 fo2ndresm 6261 eloprabi 6295 fo2ndf 6326 xpsnen 6931 xpassen 6940 ac6sfi 7010 undifdc 7036 ine0 8486 nn0n0n1ge2 9463 fzval2 10153 fseq1p1m1 10236 fsum2dlemstep 11820 modfsummodlemstep 11843 fprod2dlemstep 12008 ef4p 12080 sin01bnd 12143 odd2np1 12259 sqpweven 12572 2sqpwodd 12573 psmetdmdm 14871 xmetdmdm 14903 dveflem 15273 reeff1oleme 15319 abssinper 15393 lgseisenlem1 15622 |
| Copyright terms: Public domain | W3C validator |