| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr2di | GIF version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
| Ref | Expression |
|---|---|
| eqtr2di.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| eqtr2di.2 | ⊢ 𝐵 = 𝐶 |
| Ref | Expression |
|---|---|
| eqtr2di | ⊢ (𝜑 → 𝐶 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr2di.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | eqtr2di.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
| 3 | 1, 2 | eqtrdi 2245 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) |
| 4 | 3 | eqcomd 2202 | 1 ⊢ (𝜑 → 𝐶 = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: eqtr4id 2248 elxp4 5158 elxp5 5159 fo1stresm 6228 fo2ndresm 6229 eloprabi 6263 fo2ndf 6294 xpsnen 6889 xpassen 6898 ac6sfi 6968 undifdc 6994 ine0 8439 nn0n0n1ge2 9415 fzval2 10105 fseq1p1m1 10188 fsum2dlemstep 11618 modfsummodlemstep 11641 fprod2dlemstep 11806 ef4p 11878 sin01bnd 11941 odd2np1 12057 sqpweven 12370 2sqpwodd 12371 psmetdmdm 14668 xmetdmdm 14700 dveflem 15070 reeff1oleme 15116 abssinper 15190 lgseisenlem1 15419 |
| Copyright terms: Public domain | W3C validator |