Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqtr2di | GIF version |
Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
Ref | Expression |
---|---|
eqtr2di.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
eqtr2di.2 | ⊢ 𝐵 = 𝐶 |
Ref | Expression |
---|---|
eqtr2di | ⊢ (𝜑 → 𝐶 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr2di.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | eqtr2di.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
3 | 1, 2 | eqtrdi 2215 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) |
4 | 3 | eqcomd 2171 | 1 ⊢ (𝜑 → 𝐶 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-4 1498 ax-17 1514 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 |
This theorem is referenced by: eqtr4id 2218 elxp4 5091 elxp5 5092 fo1stresm 6129 fo2ndresm 6130 eloprabi 6164 fo2ndf 6195 xpsnen 6787 xpassen 6796 ac6sfi 6864 undifdc 6889 ine0 8292 nn0n0n1ge2 9261 fzval2 9947 fseq1p1m1 10029 fsum2dlemstep 11375 modfsummodlemstep 11398 fprod2dlemstep 11563 ef4p 11635 sin01bnd 11698 odd2np1 11810 sqpweven 12107 2sqpwodd 12108 psmetdmdm 12964 xmetdmdm 12996 dveflem 13327 reeff1oleme 13333 abssinper 13407 |
Copyright terms: Public domain | W3C validator |