ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eltg2b GIF version

Theorem eltg2b 14222
Description: Membership in a topology generated by a basis. (Contributed by Mario Carneiro, 17-Jun-2014.) (Revised by Mario Carneiro, 10-Jan-2015.)
Assertion
Ref Expression
eltg2b (𝐵𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ ∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝑦𝐴)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝑉,𝑦

Proof of Theorem eltg2b
StepHypRef Expression
1 eltg2 14221 . 2 (𝐵𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ (𝐴 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝑦𝐴))))
2 simpl 109 . . . . . . 7 ((𝑥𝑦𝑦𝐴) → 𝑥𝑦)
32reximi 2591 . . . . . 6 (∃𝑦𝐵 (𝑥𝑦𝑦𝐴) → ∃𝑦𝐵 𝑥𝑦)
4 eluni2 3839 . . . . . 6 (𝑥 𝐵 ↔ ∃𝑦𝐵 𝑥𝑦)
53, 4sylibr 134 . . . . 5 (∃𝑦𝐵 (𝑥𝑦𝑦𝐴) → 𝑥 𝐵)
65ralimi 2557 . . . 4 (∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝑦𝐴) → ∀𝑥𝐴 𝑥 𝐵)
7 dfss3 3169 . . . 4 (𝐴 𝐵 ↔ ∀𝑥𝐴 𝑥 𝐵)
86, 7sylibr 134 . . 3 (∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝑦𝐴) → 𝐴 𝐵)
98pm4.71ri 392 . 2 (∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝑦𝐴) ↔ (𝐴 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝑦𝐴)))
101, 9bitr4di 198 1 (𝐵𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ ∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝑦𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2164  wral 2472  wrex 2473  wss 3153   cuni 3835  cfv 5254  topGenctg 12865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-topgen 12871
This theorem is referenced by:  tg2  14228  tgcl  14232  eltop2  14238  tgss2  14247  basgen2  14249  eltx  14427  tgqioo  14715
  Copyright terms: Public domain W3C validator