![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eltg2b | GIF version |
Description: Membership in a topology generated by a basis. (Contributed by Mario Carneiro, 17-Jun-2014.) (Revised by Mario Carneiro, 10-Jan-2015.) |
Ref | Expression |
---|---|
eltg2b | β’ (π΅ β π β (π΄ β (topGenβπ΅) β βπ₯ β π΄ βπ¦ β π΅ (π₯ β π¦ β§ π¦ β π΄))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eltg2 13638 | . 2 β’ (π΅ β π β (π΄ β (topGenβπ΅) β (π΄ β βͺ π΅ β§ βπ₯ β π΄ βπ¦ β π΅ (π₯ β π¦ β§ π¦ β π΄)))) | |
2 | simpl 109 | . . . . . . 7 β’ ((π₯ β π¦ β§ π¦ β π΄) β π₯ β π¦) | |
3 | 2 | reximi 2574 | . . . . . 6 β’ (βπ¦ β π΅ (π₯ β π¦ β§ π¦ β π΄) β βπ¦ β π΅ π₯ β π¦) |
4 | eluni2 3815 | . . . . . 6 β’ (π₯ β βͺ π΅ β βπ¦ β π΅ π₯ β π¦) | |
5 | 3, 4 | sylibr 134 | . . . . 5 β’ (βπ¦ β π΅ (π₯ β π¦ β§ π¦ β π΄) β π₯ β βͺ π΅) |
6 | 5 | ralimi 2540 | . . . 4 β’ (βπ₯ β π΄ βπ¦ β π΅ (π₯ β π¦ β§ π¦ β π΄) β βπ₯ β π΄ π₯ β βͺ π΅) |
7 | dfss3 3147 | . . . 4 β’ (π΄ β βͺ π΅ β βπ₯ β π΄ π₯ β βͺ π΅) | |
8 | 6, 7 | sylibr 134 | . . 3 β’ (βπ₯ β π΄ βπ¦ β π΅ (π₯ β π¦ β§ π¦ β π΄) β π΄ β βͺ π΅) |
9 | 8 | pm4.71ri 392 | . 2 β’ (βπ₯ β π΄ βπ¦ β π΅ (π₯ β π¦ β§ π¦ β π΄) β (π΄ β βͺ π΅ β§ βπ₯ β π΄ βπ¦ β π΅ (π₯ β π¦ β§ π¦ β π΄))) |
10 | 1, 9 | bitr4di 198 | 1 β’ (π΅ β π β (π΄ β (topGenβπ΅) β βπ₯ β π΄ βπ¦ β π΅ (π₯ β π¦ β§ π¦ β π΄))) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β§ wa 104 β wb 105 β wcel 2148 βwral 2455 βwrex 2456 β wss 3131 βͺ cuni 3811 βcfv 5218 topGenctg 12708 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-sbc 2965 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-iota 5180 df-fun 5220 df-fv 5226 df-topgen 12714 |
This theorem is referenced by: tg2 13645 tgcl 13649 eltop2 13655 tgss2 13664 basgen2 13666 eltx 13844 tgqioo 14132 |
Copyright terms: Public domain | W3C validator |