ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eltg2b GIF version

Theorem eltg2b 12066
Description: Membership in a topology generated by a basis. (Contributed by Mario Carneiro, 17-Jun-2014.) (Revised by Mario Carneiro, 10-Jan-2015.)
Assertion
Ref Expression
eltg2b (𝐵𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ ∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝑦𝐴)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝑉,𝑦

Proof of Theorem eltg2b
StepHypRef Expression
1 eltg2 12065 . 2 (𝐵𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ (𝐴 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝑦𝐴))))
2 simpl 108 . . . . . . 7 ((𝑥𝑦𝑦𝐴) → 𝑥𝑦)
32reximi 2503 . . . . . 6 (∃𝑦𝐵 (𝑥𝑦𝑦𝐴) → ∃𝑦𝐵 𝑥𝑦)
4 eluni2 3706 . . . . . 6 (𝑥 𝐵 ↔ ∃𝑦𝐵 𝑥𝑦)
53, 4sylibr 133 . . . . 5 (∃𝑦𝐵 (𝑥𝑦𝑦𝐴) → 𝑥 𝐵)
65ralimi 2469 . . . 4 (∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝑦𝐴) → ∀𝑥𝐴 𝑥 𝐵)
7 dfss3 3053 . . . 4 (𝐴 𝐵 ↔ ∀𝑥𝐴 𝑥 𝐵)
86, 7sylibr 133 . . 3 (∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝑦𝐴) → 𝐴 𝐵)
98pm4.71ri 387 . 2 (∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝑦𝐴) ↔ (𝐴 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝑦𝐴)))
101, 9syl6bbr 197 1 (𝐵𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ ∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝑦𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wcel 1463  wral 2390  wrex 2391  wss 3037   cuni 3702  cfv 5081  topGenctg 11978
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-pow 4058  ax-pr 4091  ax-un 4315
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ral 2395  df-rex 2396  df-v 2659  df-sbc 2879  df-un 3041  df-in 3043  df-ss 3050  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-br 3896  df-opab 3950  df-mpt 3951  df-id 4175  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-iota 5046  df-fun 5083  df-fv 5089  df-topgen 11984
This theorem is referenced by:  tg2  12072  tgcl  12076  eltop2  12082  tgss2  12091  basgen2  12093  eltx  12270  tgqioo  12533
  Copyright terms: Public domain W3C validator