ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f00 GIF version

Theorem f00 5379
Description: A class is a function with empty codomain iff it and its domain are empty. (Contributed by NM, 10-Dec-2003.)
Assertion
Ref Expression
f00 (𝐹:𝐴⟶∅ ↔ (𝐹 = ∅ ∧ 𝐴 = ∅))

Proof of Theorem f00
StepHypRef Expression
1 ffun 5340 . . . . 5 (𝐹:𝐴⟶∅ → Fun 𝐹)
2 frn 5346 . . . . . . 7 (𝐹:𝐴⟶∅ → ran 𝐹 ⊆ ∅)
3 ss0 3449 . . . . . . 7 (ran 𝐹 ⊆ ∅ → ran 𝐹 = ∅)
42, 3syl 14 . . . . . 6 (𝐹:𝐴⟶∅ → ran 𝐹 = ∅)
5 dm0rn0 4821 . . . . . 6 (dom 𝐹 = ∅ ↔ ran 𝐹 = ∅)
64, 5sylibr 133 . . . . 5 (𝐹:𝐴⟶∅ → dom 𝐹 = ∅)
7 df-fn 5191 . . . . 5 (𝐹 Fn ∅ ↔ (Fun 𝐹 ∧ dom 𝐹 = ∅))
81, 6, 7sylanbrc 414 . . . 4 (𝐹:𝐴⟶∅ → 𝐹 Fn ∅)
9 fn0 5307 . . . 4 (𝐹 Fn ∅ ↔ 𝐹 = ∅)
108, 9sylib 121 . . 3 (𝐹:𝐴⟶∅ → 𝐹 = ∅)
11 fdm 5343 . . . 4 (𝐹:𝐴⟶∅ → dom 𝐹 = 𝐴)
1211, 6eqtr3d 2200 . . 3 (𝐹:𝐴⟶∅ → 𝐴 = ∅)
1310, 12jca 304 . 2 (𝐹:𝐴⟶∅ → (𝐹 = ∅ ∧ 𝐴 = ∅))
14 f0 5378 . . 3 ∅:∅⟶∅
15 feq1 5320 . . . 4 (𝐹 = ∅ → (𝐹:𝐴⟶∅ ↔ ∅:𝐴⟶∅))
16 feq2 5321 . . . 4 (𝐴 = ∅ → (∅:𝐴⟶∅ ↔ ∅:∅⟶∅))
1715, 16sylan9bb 458 . . 3 ((𝐹 = ∅ ∧ 𝐴 = ∅) → (𝐹:𝐴⟶∅ ↔ ∅:∅⟶∅))
1814, 17mpbiri 167 . 2 ((𝐹 = ∅ ∧ 𝐴 = ∅) → 𝐹:𝐴⟶∅)
1913, 18impbii 125 1 (𝐹:𝐴⟶∅ ↔ (𝐹 = ∅ ∧ 𝐴 = ∅))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104   = wceq 1343  wss 3116  c0 3409  dom cdm 4604  ran crn 4605  Fun wfun 5182   Fn wfn 5183  wf 5184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-fun 5190  df-fn 5191  df-f 5192
This theorem is referenced by:  dom0  6804
  Copyright terms: Public domain W3C validator