ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f00 GIF version

Theorem f00 5516
Description: A class is a function with empty codomain iff it and its domain are empty. (Contributed by NM, 10-Dec-2003.)
Assertion
Ref Expression
f00 (𝐹:𝐴⟶∅ ↔ (𝐹 = ∅ ∧ 𝐴 = ∅))

Proof of Theorem f00
StepHypRef Expression
1 ffun 5475 . . . . 5 (𝐹:𝐴⟶∅ → Fun 𝐹)
2 frn 5481 . . . . . . 7 (𝐹:𝐴⟶∅ → ran 𝐹 ⊆ ∅)
3 ss0 3532 . . . . . . 7 (ran 𝐹 ⊆ ∅ → ran 𝐹 = ∅)
42, 3syl 14 . . . . . 6 (𝐹:𝐴⟶∅ → ran 𝐹 = ∅)
5 dm0rn0 4939 . . . . . 6 (dom 𝐹 = ∅ ↔ ran 𝐹 = ∅)
64, 5sylibr 134 . . . . 5 (𝐹:𝐴⟶∅ → dom 𝐹 = ∅)
7 df-fn 5320 . . . . 5 (𝐹 Fn ∅ ↔ (Fun 𝐹 ∧ dom 𝐹 = ∅))
81, 6, 7sylanbrc 417 . . . 4 (𝐹:𝐴⟶∅ → 𝐹 Fn ∅)
9 fn0 5442 . . . 4 (𝐹 Fn ∅ ↔ 𝐹 = ∅)
108, 9sylib 122 . . 3 (𝐹:𝐴⟶∅ → 𝐹 = ∅)
11 fdm 5478 . . . 4 (𝐹:𝐴⟶∅ → dom 𝐹 = 𝐴)
1211, 6eqtr3d 2264 . . 3 (𝐹:𝐴⟶∅ → 𝐴 = ∅)
1310, 12jca 306 . 2 (𝐹:𝐴⟶∅ → (𝐹 = ∅ ∧ 𝐴 = ∅))
14 f0 5515 . . 3 ∅:∅⟶∅
15 feq1 5455 . . . 4 (𝐹 = ∅ → (𝐹:𝐴⟶∅ ↔ ∅:𝐴⟶∅))
16 feq2 5456 . . . 4 (𝐴 = ∅ → (∅:𝐴⟶∅ ↔ ∅:∅⟶∅))
1715, 16sylan9bb 462 . . 3 ((𝐹 = ∅ ∧ 𝐴 = ∅) → (𝐹:𝐴⟶∅ ↔ ∅:∅⟶∅))
1814, 17mpbiri 168 . 2 ((𝐹 = ∅ ∧ 𝐴 = ∅) → 𝐹:𝐴⟶∅)
1913, 18impbii 126 1 (𝐹:𝐴⟶∅ ↔ (𝐹 = ∅ ∧ 𝐴 = ∅))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1395  wss 3197  c0 3491  dom cdm 4718  ran crn 4719  Fun wfun 5311   Fn wfn 5312  wf 5313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-fun 5319  df-fn 5320  df-f 5321
This theorem is referenced by:  dom0  6995  0wrd0  11092  uhgr0vb  15878
  Copyright terms: Public domain W3C validator