![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > f00 | GIF version |
Description: A class is a function with empty codomain iff it and its domain are empty. (Contributed by NM, 10-Dec-2003.) |
Ref | Expression |
---|---|
f00 | β’ (πΉ:π΄βΆβ β (πΉ = β β§ π΄ = β )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffun 5370 | . . . . 5 β’ (πΉ:π΄βΆβ β Fun πΉ) | |
2 | frn 5376 | . . . . . . 7 β’ (πΉ:π΄βΆβ β ran πΉ β β ) | |
3 | ss0 3465 | . . . . . . 7 β’ (ran πΉ β β β ran πΉ = β ) | |
4 | 2, 3 | syl 14 | . . . . . 6 β’ (πΉ:π΄βΆβ β ran πΉ = β ) |
5 | dm0rn0 4846 | . . . . . 6 β’ (dom πΉ = β β ran πΉ = β ) | |
6 | 4, 5 | sylibr 134 | . . . . 5 β’ (πΉ:π΄βΆβ β dom πΉ = β ) |
7 | df-fn 5221 | . . . . 5 β’ (πΉ Fn β β (Fun πΉ β§ dom πΉ = β )) | |
8 | 1, 6, 7 | sylanbrc 417 | . . . 4 β’ (πΉ:π΄βΆβ β πΉ Fn β ) |
9 | fn0 5337 | . . . 4 β’ (πΉ Fn β β πΉ = β ) | |
10 | 8, 9 | sylib 122 | . . 3 β’ (πΉ:π΄βΆβ β πΉ = β ) |
11 | fdm 5373 | . . . 4 β’ (πΉ:π΄βΆβ β dom πΉ = π΄) | |
12 | 11, 6 | eqtr3d 2212 | . . 3 β’ (πΉ:π΄βΆβ β π΄ = β ) |
13 | 10, 12 | jca 306 | . 2 β’ (πΉ:π΄βΆβ β (πΉ = β β§ π΄ = β )) |
14 | f0 5408 | . . 3 β’ β :β βΆβ | |
15 | feq1 5350 | . . . 4 β’ (πΉ = β β (πΉ:π΄βΆβ β β :π΄βΆβ )) | |
16 | feq2 5351 | . . . 4 β’ (π΄ = β β (β :π΄βΆβ β β :β βΆβ )) | |
17 | 15, 16 | sylan9bb 462 | . . 3 β’ ((πΉ = β β§ π΄ = β ) β (πΉ:π΄βΆβ β β :β βΆβ )) |
18 | 14, 17 | mpbiri 168 | . 2 β’ ((πΉ = β β§ π΄ = β ) β πΉ:π΄βΆβ ) |
19 | 13, 18 | impbii 126 | 1 β’ (πΉ:π΄βΆβ β (πΉ = β β§ π΄ = β )) |
Colors of variables: wff set class |
Syntax hints: β§ wa 104 β wb 105 = wceq 1353 β wss 3131 β c0 3424 dom cdm 4628 ran crn 4629 Fun wfun 5212 Fn wfn 5213 βΆwf 5214 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-br 4006 df-opab 4067 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-fun 5220 df-fn 5221 df-f 5222 |
This theorem is referenced by: dom0 6840 |
Copyright terms: Public domain | W3C validator |