![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > f00 | GIF version |
Description: A class is a function with empty codomain iff it and its domain are empty. (Contributed by NM, 10-Dec-2003.) |
Ref | Expression |
---|---|
f00 | ⊢ (𝐹:𝐴⟶∅ ↔ (𝐹 = ∅ ∧ 𝐴 = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffun 5231 | . . . . 5 ⊢ (𝐹:𝐴⟶∅ → Fun 𝐹) | |
2 | frn 5237 | . . . . . . 7 ⊢ (𝐹:𝐴⟶∅ → ran 𝐹 ⊆ ∅) | |
3 | ss0 3367 | . . . . . . 7 ⊢ (ran 𝐹 ⊆ ∅ → ran 𝐹 = ∅) | |
4 | 2, 3 | syl 14 | . . . . . 6 ⊢ (𝐹:𝐴⟶∅ → ran 𝐹 = ∅) |
5 | dm0rn0 4714 | . . . . . 6 ⊢ (dom 𝐹 = ∅ ↔ ran 𝐹 = ∅) | |
6 | 4, 5 | sylibr 133 | . . . . 5 ⊢ (𝐹:𝐴⟶∅ → dom 𝐹 = ∅) |
7 | df-fn 5082 | . . . . 5 ⊢ (𝐹 Fn ∅ ↔ (Fun 𝐹 ∧ dom 𝐹 = ∅)) | |
8 | 1, 6, 7 | sylanbrc 411 | . . . 4 ⊢ (𝐹:𝐴⟶∅ → 𝐹 Fn ∅) |
9 | fn0 5198 | . . . 4 ⊢ (𝐹 Fn ∅ ↔ 𝐹 = ∅) | |
10 | 8, 9 | sylib 121 | . . 3 ⊢ (𝐹:𝐴⟶∅ → 𝐹 = ∅) |
11 | fdm 5234 | . . . 4 ⊢ (𝐹:𝐴⟶∅ → dom 𝐹 = 𝐴) | |
12 | 11, 6 | eqtr3d 2147 | . . 3 ⊢ (𝐹:𝐴⟶∅ → 𝐴 = ∅) |
13 | 10, 12 | jca 302 | . 2 ⊢ (𝐹:𝐴⟶∅ → (𝐹 = ∅ ∧ 𝐴 = ∅)) |
14 | f0 5269 | . . 3 ⊢ ∅:∅⟶∅ | |
15 | feq1 5211 | . . . 4 ⊢ (𝐹 = ∅ → (𝐹:𝐴⟶∅ ↔ ∅:𝐴⟶∅)) | |
16 | feq2 5212 | . . . 4 ⊢ (𝐴 = ∅ → (∅:𝐴⟶∅ ↔ ∅:∅⟶∅)) | |
17 | 15, 16 | sylan9bb 455 | . . 3 ⊢ ((𝐹 = ∅ ∧ 𝐴 = ∅) → (𝐹:𝐴⟶∅ ↔ ∅:∅⟶∅)) |
18 | 14, 17 | mpbiri 167 | . 2 ⊢ ((𝐹 = ∅ ∧ 𝐴 = ∅) → 𝐹:𝐴⟶∅) |
19 | 13, 18 | impbii 125 | 1 ⊢ (𝐹:𝐴⟶∅ ↔ (𝐹 = ∅ ∧ 𝐴 = ∅)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 = wceq 1312 ⊆ wss 3035 ∅c0 3327 dom cdm 4497 ran crn 4498 Fun wfun 5073 Fn wfn 5074 ⟶wf 5075 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-14 1473 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 ax-sep 4004 ax-nul 4012 ax-pow 4056 ax-pr 4089 |
This theorem depends on definitions: df-bi 116 df-3an 945 df-tru 1315 df-fal 1318 df-nf 1418 df-sb 1717 df-eu 1976 df-mo 1977 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-ral 2393 df-rex 2394 df-v 2657 df-dif 3037 df-un 3039 df-in 3041 df-ss 3048 df-nul 3328 df-pw 3476 df-sn 3497 df-pr 3498 df-op 3500 df-br 3894 df-opab 3948 df-id 4173 df-xp 4503 df-rel 4504 df-cnv 4505 df-co 4506 df-dm 4507 df-rn 4508 df-fun 5081 df-fn 5082 df-f 5083 |
This theorem is referenced by: dom0 6683 |
Copyright terms: Public domain | W3C validator |