ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f00 GIF version

Theorem f00 5446
Description: A class is a function with empty codomain iff it and its domain are empty. (Contributed by NM, 10-Dec-2003.)
Assertion
Ref Expression
f00 (𝐹:𝐴⟶∅ ↔ (𝐹 = ∅ ∧ 𝐴 = ∅))

Proof of Theorem f00
StepHypRef Expression
1 ffun 5407 . . . . 5 (𝐹:𝐴⟶∅ → Fun 𝐹)
2 frn 5413 . . . . . . 7 (𝐹:𝐴⟶∅ → ran 𝐹 ⊆ ∅)
3 ss0 3488 . . . . . . 7 (ran 𝐹 ⊆ ∅ → ran 𝐹 = ∅)
42, 3syl 14 . . . . . 6 (𝐹:𝐴⟶∅ → ran 𝐹 = ∅)
5 dm0rn0 4880 . . . . . 6 (dom 𝐹 = ∅ ↔ ran 𝐹 = ∅)
64, 5sylibr 134 . . . . 5 (𝐹:𝐴⟶∅ → dom 𝐹 = ∅)
7 df-fn 5258 . . . . 5 (𝐹 Fn ∅ ↔ (Fun 𝐹 ∧ dom 𝐹 = ∅))
81, 6, 7sylanbrc 417 . . . 4 (𝐹:𝐴⟶∅ → 𝐹 Fn ∅)
9 fn0 5374 . . . 4 (𝐹 Fn ∅ ↔ 𝐹 = ∅)
108, 9sylib 122 . . 3 (𝐹:𝐴⟶∅ → 𝐹 = ∅)
11 fdm 5410 . . . 4 (𝐹:𝐴⟶∅ → dom 𝐹 = 𝐴)
1211, 6eqtr3d 2228 . . 3 (𝐹:𝐴⟶∅ → 𝐴 = ∅)
1310, 12jca 306 . 2 (𝐹:𝐴⟶∅ → (𝐹 = ∅ ∧ 𝐴 = ∅))
14 f0 5445 . . 3 ∅:∅⟶∅
15 feq1 5387 . . . 4 (𝐹 = ∅ → (𝐹:𝐴⟶∅ ↔ ∅:𝐴⟶∅))
16 feq2 5388 . . . 4 (𝐴 = ∅ → (∅:𝐴⟶∅ ↔ ∅:∅⟶∅))
1715, 16sylan9bb 462 . . 3 ((𝐹 = ∅ ∧ 𝐴 = ∅) → (𝐹:𝐴⟶∅ ↔ ∅:∅⟶∅))
1814, 17mpbiri 168 . 2 ((𝐹 = ∅ ∧ 𝐴 = ∅) → 𝐹:𝐴⟶∅)
1913, 18impbii 126 1 (𝐹:𝐴⟶∅ ↔ (𝐹 = ∅ ∧ 𝐴 = ∅))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1364  wss 3154  c0 3447  dom cdm 4660  ran crn 4661  Fun wfun 5249   Fn wfn 5250  wf 5251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031  df-opab 4092  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-fun 5257  df-fn 5258  df-f 5259
This theorem is referenced by:  dom0  6896  0wrd0  10943
  Copyright terms: Public domain W3C validator