ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f00 GIF version

Theorem f00 5270
Description: A class is a function with empty codomain iff it and its domain are empty. (Contributed by NM, 10-Dec-2003.)
Assertion
Ref Expression
f00 (𝐹:𝐴⟶∅ ↔ (𝐹 = ∅ ∧ 𝐴 = ∅))

Proof of Theorem f00
StepHypRef Expression
1 ffun 5231 . . . . 5 (𝐹:𝐴⟶∅ → Fun 𝐹)
2 frn 5237 . . . . . . 7 (𝐹:𝐴⟶∅ → ran 𝐹 ⊆ ∅)
3 ss0 3367 . . . . . . 7 (ran 𝐹 ⊆ ∅ → ran 𝐹 = ∅)
42, 3syl 14 . . . . . 6 (𝐹:𝐴⟶∅ → ran 𝐹 = ∅)
5 dm0rn0 4714 . . . . . 6 (dom 𝐹 = ∅ ↔ ran 𝐹 = ∅)
64, 5sylibr 133 . . . . 5 (𝐹:𝐴⟶∅ → dom 𝐹 = ∅)
7 df-fn 5082 . . . . 5 (𝐹 Fn ∅ ↔ (Fun 𝐹 ∧ dom 𝐹 = ∅))
81, 6, 7sylanbrc 411 . . . 4 (𝐹:𝐴⟶∅ → 𝐹 Fn ∅)
9 fn0 5198 . . . 4 (𝐹 Fn ∅ ↔ 𝐹 = ∅)
108, 9sylib 121 . . 3 (𝐹:𝐴⟶∅ → 𝐹 = ∅)
11 fdm 5234 . . . 4 (𝐹:𝐴⟶∅ → dom 𝐹 = 𝐴)
1211, 6eqtr3d 2147 . . 3 (𝐹:𝐴⟶∅ → 𝐴 = ∅)
1310, 12jca 302 . 2 (𝐹:𝐴⟶∅ → (𝐹 = ∅ ∧ 𝐴 = ∅))
14 f0 5269 . . 3 ∅:∅⟶∅
15 feq1 5211 . . . 4 (𝐹 = ∅ → (𝐹:𝐴⟶∅ ↔ ∅:𝐴⟶∅))
16 feq2 5212 . . . 4 (𝐴 = ∅ → (∅:𝐴⟶∅ ↔ ∅:∅⟶∅))
1715, 16sylan9bb 455 . . 3 ((𝐹 = ∅ ∧ 𝐴 = ∅) → (𝐹:𝐴⟶∅ ↔ ∅:∅⟶∅))
1814, 17mpbiri 167 . 2 ((𝐹 = ∅ ∧ 𝐴 = ∅) → 𝐹:𝐴⟶∅)
1913, 18impbii 125 1 (𝐹:𝐴⟶∅ ↔ (𝐹 = ∅ ∧ 𝐴 = ∅))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104   = wceq 1312  wss 3035  c0 3327  dom cdm 4497  ran crn 4498  Fun wfun 5073   Fn wfn 5074  wf 5075
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-nul 4012  ax-pow 4056  ax-pr 4089
This theorem depends on definitions:  df-bi 116  df-3an 945  df-tru 1315  df-fal 1318  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ral 2393  df-rex 2394  df-v 2657  df-dif 3037  df-un 3039  df-in 3041  df-ss 3048  df-nul 3328  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-br 3894  df-opab 3948  df-id 4173  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-rn 4508  df-fun 5081  df-fn 5082  df-f 5083
This theorem is referenced by:  dom0  6683
  Copyright terms: Public domain W3C validator