| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mapvalg | GIF version | ||
| Description: The value of set exponentiation. (𝐴 ↑𝑚 𝐵) is the set of all functions that map from 𝐵 to 𝐴. Definition 10.24 of [Kunen] p. 24. (Contributed by NM, 8-Dec-2003.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| Ref | Expression |
|---|---|
| mapvalg | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴 ↑𝑚 𝐵) = {𝑓 ∣ 𝑓:𝐵⟶𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapex 6731 | . . 3 ⊢ ((𝐵 ∈ 𝐷 ∧ 𝐴 ∈ 𝐶) → {𝑓 ∣ 𝑓:𝐵⟶𝐴} ∈ V) | |
| 2 | 1 | ancoms 268 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝑓 ∣ 𝑓:𝐵⟶𝐴} ∈ V) |
| 3 | elex 2782 | . . 3 ⊢ (𝐴 ∈ 𝐶 → 𝐴 ∈ V) | |
| 4 | elex 2782 | . . 3 ⊢ (𝐵 ∈ 𝐷 → 𝐵 ∈ V) | |
| 5 | feq3 5404 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑓:𝑦⟶𝑥 ↔ 𝑓:𝑦⟶𝐴)) | |
| 6 | 5 | abbidv 2322 | . . . . 5 ⊢ (𝑥 = 𝐴 → {𝑓 ∣ 𝑓:𝑦⟶𝑥} = {𝑓 ∣ 𝑓:𝑦⟶𝐴}) |
| 7 | feq2 5403 | . . . . . 6 ⊢ (𝑦 = 𝐵 → (𝑓:𝑦⟶𝐴 ↔ 𝑓:𝐵⟶𝐴)) | |
| 8 | 7 | abbidv 2322 | . . . . 5 ⊢ (𝑦 = 𝐵 → {𝑓 ∣ 𝑓:𝑦⟶𝐴} = {𝑓 ∣ 𝑓:𝐵⟶𝐴}) |
| 9 | df-map 6727 | . . . . 5 ⊢ ↑𝑚 = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓 ∣ 𝑓:𝑦⟶𝑥}) | |
| 10 | 6, 8, 9 | ovmpog 6070 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ {𝑓 ∣ 𝑓:𝐵⟶𝐴} ∈ V) → (𝐴 ↑𝑚 𝐵) = {𝑓 ∣ 𝑓:𝐵⟶𝐴}) |
| 11 | 10 | 3expia 1207 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({𝑓 ∣ 𝑓:𝐵⟶𝐴} ∈ V → (𝐴 ↑𝑚 𝐵) = {𝑓 ∣ 𝑓:𝐵⟶𝐴})) |
| 12 | 3, 4, 11 | syl2an 289 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ({𝑓 ∣ 𝑓:𝐵⟶𝐴} ∈ V → (𝐴 ↑𝑚 𝐵) = {𝑓 ∣ 𝑓:𝐵⟶𝐴})) |
| 13 | 2, 12 | mpd 13 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴 ↑𝑚 𝐵) = {𝑓 ∣ 𝑓:𝐵⟶𝐴}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1372 ∈ wcel 2175 {cab 2190 Vcvv 2771 ⟶wf 5264 (class class class)co 5934 ↑𝑚 cmap 6725 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-id 4338 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-fv 5276 df-ov 5937 df-oprab 5938 df-mpo 5939 df-map 6727 |
| This theorem is referenced by: mapval 6737 elmapg 6738 ixpconstg 6784 ptex 13014 psrval 14346 psrbasg 14354 cnovex 14586 ispsmet 14713 cncfval 14962 |
| Copyright terms: Public domain | W3C validator |