ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mapvalg GIF version

Theorem mapvalg 6758
Description: The value of set exponentiation. (𝐴𝑚 𝐵) is the set of all functions that map from 𝐵 to 𝐴. Definition 10.24 of [Kunen] p. 24. (Contributed by NM, 8-Dec-2003.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
mapvalg ((𝐴𝐶𝐵𝐷) → (𝐴𝑚 𝐵) = {𝑓𝑓:𝐵𝐴})
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓
Allowed substitution hints:   𝐶(𝑓)   𝐷(𝑓)

Proof of Theorem mapvalg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mapex 6754 . . 3 ((𝐵𝐷𝐴𝐶) → {𝑓𝑓:𝐵𝐴} ∈ V)
21ancoms 268 . 2 ((𝐴𝐶𝐵𝐷) → {𝑓𝑓:𝐵𝐴} ∈ V)
3 elex 2785 . . 3 (𝐴𝐶𝐴 ∈ V)
4 elex 2785 . . 3 (𝐵𝐷𝐵 ∈ V)
5 feq3 5420 . . . . . 6 (𝑥 = 𝐴 → (𝑓:𝑦𝑥𝑓:𝑦𝐴))
65abbidv 2324 . . . . 5 (𝑥 = 𝐴 → {𝑓𝑓:𝑦𝑥} = {𝑓𝑓:𝑦𝐴})
7 feq2 5419 . . . . . 6 (𝑦 = 𝐵 → (𝑓:𝑦𝐴𝑓:𝐵𝐴))
87abbidv 2324 . . . . 5 (𝑦 = 𝐵 → {𝑓𝑓:𝑦𝐴} = {𝑓𝑓:𝐵𝐴})
9 df-map 6750 . . . . 5 𝑚 = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓𝑓:𝑦𝑥})
106, 8, 9ovmpog 6093 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ {𝑓𝑓:𝐵𝐴} ∈ V) → (𝐴𝑚 𝐵) = {𝑓𝑓:𝐵𝐴})
11103expia 1208 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({𝑓𝑓:𝐵𝐴} ∈ V → (𝐴𝑚 𝐵) = {𝑓𝑓:𝐵𝐴}))
123, 4, 11syl2an 289 . 2 ((𝐴𝐶𝐵𝐷) → ({𝑓𝑓:𝐵𝐴} ∈ V → (𝐴𝑚 𝐵) = {𝑓𝑓:𝐵𝐴}))
132, 12mpd 13 1 ((𝐴𝐶𝐵𝐷) → (𝐴𝑚 𝐵) = {𝑓𝑓:𝐵𝐴})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  {cab 2192  Vcvv 2773  wf 5276  (class class class)co 5957  𝑚 cmap 6748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-fv 5288  df-ov 5960  df-oprab 5961  df-mpo 5962  df-map 6750
This theorem is referenced by:  mapval  6760  elmapg  6761  ixpconstg  6807  ptex  13171  psrval  14503  psrbasg  14511  cnovex  14743  ispsmet  14870  cncfval  15119
  Copyright terms: Public domain W3C validator