| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mapvalg | GIF version | ||
| Description: The value of set exponentiation. (𝐴 ↑𝑚 𝐵) is the set of all functions that map from 𝐵 to 𝐴. Definition 10.24 of [Kunen] p. 24. (Contributed by NM, 8-Dec-2003.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| Ref | Expression |
|---|---|
| mapvalg | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴 ↑𝑚 𝐵) = {𝑓 ∣ 𝑓:𝐵⟶𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapex 6754 | . . 3 ⊢ ((𝐵 ∈ 𝐷 ∧ 𝐴 ∈ 𝐶) → {𝑓 ∣ 𝑓:𝐵⟶𝐴} ∈ V) | |
| 2 | 1 | ancoms 268 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝑓 ∣ 𝑓:𝐵⟶𝐴} ∈ V) |
| 3 | elex 2785 | . . 3 ⊢ (𝐴 ∈ 𝐶 → 𝐴 ∈ V) | |
| 4 | elex 2785 | . . 3 ⊢ (𝐵 ∈ 𝐷 → 𝐵 ∈ V) | |
| 5 | feq3 5420 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑓:𝑦⟶𝑥 ↔ 𝑓:𝑦⟶𝐴)) | |
| 6 | 5 | abbidv 2324 | . . . . 5 ⊢ (𝑥 = 𝐴 → {𝑓 ∣ 𝑓:𝑦⟶𝑥} = {𝑓 ∣ 𝑓:𝑦⟶𝐴}) |
| 7 | feq2 5419 | . . . . . 6 ⊢ (𝑦 = 𝐵 → (𝑓:𝑦⟶𝐴 ↔ 𝑓:𝐵⟶𝐴)) | |
| 8 | 7 | abbidv 2324 | . . . . 5 ⊢ (𝑦 = 𝐵 → {𝑓 ∣ 𝑓:𝑦⟶𝐴} = {𝑓 ∣ 𝑓:𝐵⟶𝐴}) |
| 9 | df-map 6750 | . . . . 5 ⊢ ↑𝑚 = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓 ∣ 𝑓:𝑦⟶𝑥}) | |
| 10 | 6, 8, 9 | ovmpog 6093 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ {𝑓 ∣ 𝑓:𝐵⟶𝐴} ∈ V) → (𝐴 ↑𝑚 𝐵) = {𝑓 ∣ 𝑓:𝐵⟶𝐴}) |
| 11 | 10 | 3expia 1208 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({𝑓 ∣ 𝑓:𝐵⟶𝐴} ∈ V → (𝐴 ↑𝑚 𝐵) = {𝑓 ∣ 𝑓:𝐵⟶𝐴})) |
| 12 | 3, 4, 11 | syl2an 289 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ({𝑓 ∣ 𝑓:𝐵⟶𝐴} ∈ V → (𝐴 ↑𝑚 𝐵) = {𝑓 ∣ 𝑓:𝐵⟶𝐴})) |
| 13 | 2, 12 | mpd 13 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴 ↑𝑚 𝐵) = {𝑓 ∣ 𝑓:𝐵⟶𝐴}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 {cab 2192 Vcvv 2773 ⟶wf 5276 (class class class)co 5957 ↑𝑚 cmap 6748 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-fv 5288 df-ov 5960 df-oprab 5961 df-mpo 5962 df-map 6750 |
| This theorem is referenced by: mapval 6760 elmapg 6761 ixpconstg 6807 ptex 13171 psrval 14503 psrbasg 14511 cnovex 14743 ispsmet 14870 cncfval 15119 |
| Copyright terms: Public domain | W3C validator |