ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mapvalg GIF version

Theorem mapvalg 6596
Description: The value of set exponentiation. (𝐴𝑚 𝐵) is the set of all functions that map from 𝐵 to 𝐴. Definition 10.24 of [Kunen] p. 24. (Contributed by NM, 8-Dec-2003.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
mapvalg ((𝐴𝐶𝐵𝐷) → (𝐴𝑚 𝐵) = {𝑓𝑓:𝐵𝐴})
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓
Allowed substitution hints:   𝐶(𝑓)   𝐷(𝑓)

Proof of Theorem mapvalg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mapex 6592 . . 3 ((𝐵𝐷𝐴𝐶) → {𝑓𝑓:𝐵𝐴} ∈ V)
21ancoms 266 . 2 ((𝐴𝐶𝐵𝐷) → {𝑓𝑓:𝐵𝐴} ∈ V)
3 elex 2723 . . 3 (𝐴𝐶𝐴 ∈ V)
4 elex 2723 . . 3 (𝐵𝐷𝐵 ∈ V)
5 feq3 5301 . . . . . 6 (𝑥 = 𝐴 → (𝑓:𝑦𝑥𝑓:𝑦𝐴))
65abbidv 2275 . . . . 5 (𝑥 = 𝐴 → {𝑓𝑓:𝑦𝑥} = {𝑓𝑓:𝑦𝐴})
7 feq2 5300 . . . . . 6 (𝑦 = 𝐵 → (𝑓:𝑦𝐴𝑓:𝐵𝐴))
87abbidv 2275 . . . . 5 (𝑦 = 𝐵 → {𝑓𝑓:𝑦𝐴} = {𝑓𝑓:𝐵𝐴})
9 df-map 6588 . . . . 5 𝑚 = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓𝑓:𝑦𝑥})
106, 8, 9ovmpog 5949 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ {𝑓𝑓:𝐵𝐴} ∈ V) → (𝐴𝑚 𝐵) = {𝑓𝑓:𝐵𝐴})
11103expia 1187 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({𝑓𝑓:𝐵𝐴} ∈ V → (𝐴𝑚 𝐵) = {𝑓𝑓:𝐵𝐴}))
123, 4, 11syl2an 287 . 2 ((𝐴𝐶𝐵𝐷) → ({𝑓𝑓:𝐵𝐴} ∈ V → (𝐴𝑚 𝐵) = {𝑓𝑓:𝐵𝐴}))
132, 12mpd 13 1 ((𝐴𝐶𝐵𝐷) → (𝐴𝑚 𝐵) = {𝑓𝑓:𝐵𝐴})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1335  wcel 2128  {cab 2143  Vcvv 2712  wf 5163  (class class class)co 5818  𝑚 cmap 6586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-v 2714  df-sbc 2938  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-opab 4026  df-id 4252  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-iota 5132  df-fun 5169  df-fn 5170  df-f 5171  df-fv 5175  df-ov 5821  df-oprab 5822  df-mpo 5823  df-map 6588
This theorem is referenced by:  mapval  6598  elmapg  6599  ixpconstg  6645  cnovex  12556  ispsmet  12683  cncfval  12919
  Copyright terms: Public domain W3C validator