ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fneq1 GIF version

Theorem fneq1 5342
Description: Equality theorem for function predicate with domain. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
fneq1 (𝐹 = 𝐺 → (𝐹 Fn 𝐴𝐺 Fn 𝐴))

Proof of Theorem fneq1
StepHypRef Expression
1 funeq 5274 . . 3 (𝐹 = 𝐺 → (Fun 𝐹 ↔ Fun 𝐺))
2 dmeq 4862 . . . 4 (𝐹 = 𝐺 → dom 𝐹 = dom 𝐺)
32eqeq1d 2202 . . 3 (𝐹 = 𝐺 → (dom 𝐹 = 𝐴 ↔ dom 𝐺 = 𝐴))
41, 3anbi12d 473 . 2 (𝐹 = 𝐺 → ((Fun 𝐹 ∧ dom 𝐹 = 𝐴) ↔ (Fun 𝐺 ∧ dom 𝐺 = 𝐴)))
5 df-fn 5257 . 2 (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴))
6 df-fn 5257 . 2 (𝐺 Fn 𝐴 ↔ (Fun 𝐺 ∧ dom 𝐺 = 𝐴))
74, 5, 63bitr4g 223 1 (𝐹 = 𝐺 → (𝐹 Fn 𝐴𝐺 Fn 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  dom cdm 4659  Fun wfun 5248   Fn wfn 5249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-fun 5256  df-fn 5257
This theorem is referenced by:  fneq1d  5344  fneq1i  5348  fn0  5373  feq1  5386  foeq1  5472  f1ocnv  5513  mpteqb  5648  eufnfv  5789  uchoice  6190  tfr0dm  6375  tfrlemiex  6384  tfr1onlemsucfn  6393  tfr1onlemsucaccv  6394  tfr1onlembxssdm  6396  tfr1onlembfn  6397  tfr1onlemex  6400  tfr1onlemaccex  6401  tfr1onlemres  6402  mapval2  6732  elixp2  6756  ixpfn  6758  elixpsn  6789  cc2lem  7326  cc3  7328  lmodfopnelem1  13820
  Copyright terms: Public domain W3C validator