| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fneq1 | GIF version | ||
| Description: Equality theorem for function predicate with domain. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| fneq1 | ⊢ (𝐹 = 𝐺 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funeq 5337 | . . 3 ⊢ (𝐹 = 𝐺 → (Fun 𝐹 ↔ Fun 𝐺)) | |
| 2 | dmeq 4922 | . . . 4 ⊢ (𝐹 = 𝐺 → dom 𝐹 = dom 𝐺) | |
| 3 | 2 | eqeq1d 2238 | . . 3 ⊢ (𝐹 = 𝐺 → (dom 𝐹 = 𝐴 ↔ dom 𝐺 = 𝐴)) |
| 4 | 1, 3 | anbi12d 473 | . 2 ⊢ (𝐹 = 𝐺 → ((Fun 𝐹 ∧ dom 𝐹 = 𝐴) ↔ (Fun 𝐺 ∧ dom 𝐺 = 𝐴))) |
| 5 | df-fn 5320 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
| 6 | df-fn 5320 | . 2 ⊢ (𝐺 Fn 𝐴 ↔ (Fun 𝐺 ∧ dom 𝐺 = 𝐴)) | |
| 7 | 4, 5, 6 | 3bitr4g 223 | 1 ⊢ (𝐹 = 𝐺 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 dom cdm 4718 Fun wfun 5311 Fn wfn 5312 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-fun 5319 df-fn 5320 |
| This theorem is referenced by: fneq1d 5410 fneq1i 5414 fn0 5442 feq1 5455 foeq1 5543 f1ocnv 5584 mpteqb 5724 eufnfv 5869 uchoice 6281 tfr0dm 6466 tfrlemiex 6475 tfr1onlemsucfn 6484 tfr1onlemsucaccv 6485 tfr1onlembxssdm 6487 tfr1onlembfn 6488 tfr1onlemex 6491 tfr1onlemaccex 6492 tfr1onlemres 6493 mapval2 6823 elixp2 6847 ixpfn 6849 elixpsn 6880 cc2lem 7448 cc3 7450 lmodfopnelem1 14282 |
| Copyright terms: Public domain | W3C validator |