ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfr1onlemsucfn GIF version

Theorem tfr1onlemsucfn 6237
Description: We can extend an acceptable function by one element to produce a function. Lemma for tfr1on 6247. (Contributed by Jim Kingdon, 12-Mar-2022.)
Hypotheses
Ref Expression
tfr1on.f 𝐹 = recs(𝐺)
tfr1on.g (𝜑 → Fun 𝐺)
tfr1on.x (𝜑 → Ord 𝑋)
tfr1on.ex ((𝜑𝑥𝑋𝑓 Fn 𝑥) → (𝐺𝑓) ∈ V)
tfr1onlemsucfn.1 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
tfr1onlemsucfn.3 (𝜑𝑧𝑋)
tfr1onlemsucfn.4 (𝜑𝑔 Fn 𝑧)
tfr1onlemsucfn.5 (𝜑𝑔𝐴)
Assertion
Ref Expression
tfr1onlemsucfn (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) Fn suc 𝑧)
Distinct variable groups:   𝑓,𝐺,𝑥   𝑓,𝑋,𝑥   𝑓,𝑔   𝜑,𝑓,𝑥   𝑧,𝑓,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑔)   𝐴(𝑥,𝑦,𝑧,𝑓,𝑔)   𝐹(𝑥,𝑦,𝑧,𝑓,𝑔)   𝐺(𝑦,𝑧,𝑔)   𝑋(𝑦,𝑧,𝑔)

Proof of Theorem tfr1onlemsucfn
StepHypRef Expression
1 tfr1onlemsucfn.3 . . 3 (𝜑𝑧𝑋)
21elexd 2699 . 2 (𝜑𝑧 ∈ V)
3 fneq2 5212 . . . . . 6 (𝑥 = 𝑧 → (𝑓 Fn 𝑥𝑓 Fn 𝑧))
43imbi1d 230 . . . . 5 (𝑥 = 𝑧 → ((𝑓 Fn 𝑥 → (𝐺𝑓) ∈ V) ↔ (𝑓 Fn 𝑧 → (𝐺𝑓) ∈ V)))
54albidv 1796 . . . 4 (𝑥 = 𝑧 → (∀𝑓(𝑓 Fn 𝑥 → (𝐺𝑓) ∈ V) ↔ ∀𝑓(𝑓 Fn 𝑧 → (𝐺𝑓) ∈ V)))
6 tfr1on.ex . . . . . . 7 ((𝜑𝑥𝑋𝑓 Fn 𝑥) → (𝐺𝑓) ∈ V)
763expia 1183 . . . . . 6 ((𝜑𝑥𝑋) → (𝑓 Fn 𝑥 → (𝐺𝑓) ∈ V))
87alrimiv 1846 . . . . 5 ((𝜑𝑥𝑋) → ∀𝑓(𝑓 Fn 𝑥 → (𝐺𝑓) ∈ V))
98ralrimiva 2505 . . . 4 (𝜑 → ∀𝑥𝑋𝑓(𝑓 Fn 𝑥 → (𝐺𝑓) ∈ V))
105, 9, 1rspcdva 2794 . . 3 (𝜑 → ∀𝑓(𝑓 Fn 𝑧 → (𝐺𝑓) ∈ V))
11 tfr1onlemsucfn.4 . . 3 (𝜑𝑔 Fn 𝑧)
12 fneq1 5211 . . . . 5 (𝑓 = 𝑔 → (𝑓 Fn 𝑧𝑔 Fn 𝑧))
13 fveq2 5421 . . . . . 6 (𝑓 = 𝑔 → (𝐺𝑓) = (𝐺𝑔))
1413eleq1d 2208 . . . . 5 (𝑓 = 𝑔 → ((𝐺𝑓) ∈ V ↔ (𝐺𝑔) ∈ V))
1512, 14imbi12d 233 . . . 4 (𝑓 = 𝑔 → ((𝑓 Fn 𝑧 → (𝐺𝑓) ∈ V) ↔ (𝑔 Fn 𝑧 → (𝐺𝑔) ∈ V)))
1615spv 1832 . . 3 (∀𝑓(𝑓 Fn 𝑧 → (𝐺𝑓) ∈ V) → (𝑔 Fn 𝑧 → (𝐺𝑔) ∈ V))
1710, 11, 16sylc 62 . 2 (𝜑 → (𝐺𝑔) ∈ V)
18 eqid 2139 . 2 (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})
19 df-suc 4293 . 2 suc 𝑧 = (𝑧 ∪ {𝑧})
20 tfr1on.x . . . 4 (𝜑 → Ord 𝑋)
21 ordelon 4305 . . . 4 ((Ord 𝑋𝑧𝑋) → 𝑧 ∈ On)
2220, 1, 21syl2anc 408 . . 3 (𝜑𝑧 ∈ On)
23 eloni 4297 . . 3 (𝑧 ∈ On → Ord 𝑧)
24 ordirr 4457 . . 3 (Ord 𝑧 → ¬ 𝑧𝑧)
2522, 23, 243syl 17 . 2 (𝜑 → ¬ 𝑧𝑧)
262, 17, 11, 18, 19, 25fnunsn 5230 1 (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) Fn suc 𝑧)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  w3a 962  wal 1329   = wceq 1331  wcel 1480  {cab 2125  wral 2416  wrex 2417  Vcvv 2686  cun 3069  {csn 3527  cop 3530  Ord word 4284  Oncon0 4285  suc csuc 4287  cres 4541  Fun wfun 5117   Fn wfn 5118  cfv 5123  recscrecs 6201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-setind 4452
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-v 2688  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fn 5126  df-fv 5131
This theorem is referenced by:  tfr1onlemsucaccv  6238  tfr1onlembfn  6241
  Copyright terms: Public domain W3C validator