| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tfr1onlemsucfn | GIF version | ||
| Description: We can extend an acceptable function by one element to produce a function. Lemma for tfr1on 6408. (Contributed by Jim Kingdon, 12-Mar-2022.) |
| Ref | Expression |
|---|---|
| tfr1on.f | ⊢ 𝐹 = recs(𝐺) |
| tfr1on.g | ⊢ (𝜑 → Fun 𝐺) |
| tfr1on.x | ⊢ (𝜑 → Ord 𝑋) |
| tfr1on.ex | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓 Fn 𝑥) → (𝐺‘𝑓) ∈ V) |
| tfr1onlemsucfn.1 | ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} |
| tfr1onlemsucfn.3 | ⊢ (𝜑 → 𝑧 ∈ 𝑋) |
| tfr1onlemsucfn.4 | ⊢ (𝜑 → 𝑔 Fn 𝑧) |
| tfr1onlemsucfn.5 | ⊢ (𝜑 → 𝑔 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| tfr1onlemsucfn | ⊢ (𝜑 → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) Fn suc 𝑧) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfr1onlemsucfn.3 | . . 3 ⊢ (𝜑 → 𝑧 ∈ 𝑋) | |
| 2 | 1 | elexd 2776 | . 2 ⊢ (𝜑 → 𝑧 ∈ V) |
| 3 | fneq2 5347 | . . . . . 6 ⊢ (𝑥 = 𝑧 → (𝑓 Fn 𝑥 ↔ 𝑓 Fn 𝑧)) | |
| 4 | 3 | imbi1d 231 | . . . . 5 ⊢ (𝑥 = 𝑧 → ((𝑓 Fn 𝑥 → (𝐺‘𝑓) ∈ V) ↔ (𝑓 Fn 𝑧 → (𝐺‘𝑓) ∈ V))) |
| 5 | 4 | albidv 1838 | . . . 4 ⊢ (𝑥 = 𝑧 → (∀𝑓(𝑓 Fn 𝑥 → (𝐺‘𝑓) ∈ V) ↔ ∀𝑓(𝑓 Fn 𝑧 → (𝐺‘𝑓) ∈ V))) |
| 6 | tfr1on.ex | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓 Fn 𝑥) → (𝐺‘𝑓) ∈ V) | |
| 7 | 6 | 3expia 1207 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑓 Fn 𝑥 → (𝐺‘𝑓) ∈ V)) |
| 8 | 7 | alrimiv 1888 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∀𝑓(𝑓 Fn 𝑥 → (𝐺‘𝑓) ∈ V)) |
| 9 | 8 | ralrimiva 2570 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑓(𝑓 Fn 𝑥 → (𝐺‘𝑓) ∈ V)) |
| 10 | 5, 9, 1 | rspcdva 2873 | . . 3 ⊢ (𝜑 → ∀𝑓(𝑓 Fn 𝑧 → (𝐺‘𝑓) ∈ V)) |
| 11 | tfr1onlemsucfn.4 | . . 3 ⊢ (𝜑 → 𝑔 Fn 𝑧) | |
| 12 | fneq1 5346 | . . . . 5 ⊢ (𝑓 = 𝑔 → (𝑓 Fn 𝑧 ↔ 𝑔 Fn 𝑧)) | |
| 13 | fveq2 5558 | . . . . . 6 ⊢ (𝑓 = 𝑔 → (𝐺‘𝑓) = (𝐺‘𝑔)) | |
| 14 | 13 | eleq1d 2265 | . . . . 5 ⊢ (𝑓 = 𝑔 → ((𝐺‘𝑓) ∈ V ↔ (𝐺‘𝑔) ∈ V)) |
| 15 | 12, 14 | imbi12d 234 | . . . 4 ⊢ (𝑓 = 𝑔 → ((𝑓 Fn 𝑧 → (𝐺‘𝑓) ∈ V) ↔ (𝑔 Fn 𝑧 → (𝐺‘𝑔) ∈ V))) |
| 16 | 15 | spv 1874 | . . 3 ⊢ (∀𝑓(𝑓 Fn 𝑧 → (𝐺‘𝑓) ∈ V) → (𝑔 Fn 𝑧 → (𝐺‘𝑔) ∈ V)) |
| 17 | 10, 11, 16 | sylc 62 | . 2 ⊢ (𝜑 → (𝐺‘𝑔) ∈ V) |
| 18 | eqid 2196 | . 2 ⊢ (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) | |
| 19 | df-suc 4406 | . 2 ⊢ suc 𝑧 = (𝑧 ∪ {𝑧}) | |
| 20 | tfr1on.x | . . . 4 ⊢ (𝜑 → Ord 𝑋) | |
| 21 | ordelon 4418 | . . . 4 ⊢ ((Ord 𝑋 ∧ 𝑧 ∈ 𝑋) → 𝑧 ∈ On) | |
| 22 | 20, 1, 21 | syl2anc 411 | . . 3 ⊢ (𝜑 → 𝑧 ∈ On) |
| 23 | eloni 4410 | . . 3 ⊢ (𝑧 ∈ On → Ord 𝑧) | |
| 24 | ordirr 4578 | . . 3 ⊢ (Ord 𝑧 → ¬ 𝑧 ∈ 𝑧) | |
| 25 | 22, 23, 24 | 3syl 17 | . 2 ⊢ (𝜑 → ¬ 𝑧 ∈ 𝑧) |
| 26 | 2, 17, 11, 18, 19, 25 | fnunsn 5365 | 1 ⊢ (𝜑 → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) Fn suc 𝑧) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∧ w3a 980 ∀wal 1362 = wceq 1364 ∈ wcel 2167 {cab 2182 ∀wral 2475 ∃wrex 2476 Vcvv 2763 ∪ cun 3155 {csn 3622 〈cop 3625 Ord word 4397 Oncon0 4398 suc csuc 4400 ↾ cres 4665 Fun wfun 5252 Fn wfn 5253 ‘cfv 5258 recscrecs 6362 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-setind 4573 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-suc 4406 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fn 5261 df-fv 5266 |
| This theorem is referenced by: tfr1onlemsucaccv 6399 tfr1onlembfn 6402 |
| Copyright terms: Public domain | W3C validator |