| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tfr1onlemsucfn | GIF version | ||
| Description: We can extend an acceptable function by one element to produce a function. Lemma for tfr1on 6494. (Contributed by Jim Kingdon, 12-Mar-2022.) |
| Ref | Expression |
|---|---|
| tfr1on.f | ⊢ 𝐹 = recs(𝐺) |
| tfr1on.g | ⊢ (𝜑 → Fun 𝐺) |
| tfr1on.x | ⊢ (𝜑 → Ord 𝑋) |
| tfr1on.ex | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓 Fn 𝑥) → (𝐺‘𝑓) ∈ V) |
| tfr1onlemsucfn.1 | ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} |
| tfr1onlemsucfn.3 | ⊢ (𝜑 → 𝑧 ∈ 𝑋) |
| tfr1onlemsucfn.4 | ⊢ (𝜑 → 𝑔 Fn 𝑧) |
| tfr1onlemsucfn.5 | ⊢ (𝜑 → 𝑔 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| tfr1onlemsucfn | ⊢ (𝜑 → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) Fn suc 𝑧) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfr1onlemsucfn.3 | . . 3 ⊢ (𝜑 → 𝑧 ∈ 𝑋) | |
| 2 | 1 | elexd 2813 | . 2 ⊢ (𝜑 → 𝑧 ∈ V) |
| 3 | fneq2 5409 | . . . . . 6 ⊢ (𝑥 = 𝑧 → (𝑓 Fn 𝑥 ↔ 𝑓 Fn 𝑧)) | |
| 4 | 3 | imbi1d 231 | . . . . 5 ⊢ (𝑥 = 𝑧 → ((𝑓 Fn 𝑥 → (𝐺‘𝑓) ∈ V) ↔ (𝑓 Fn 𝑧 → (𝐺‘𝑓) ∈ V))) |
| 5 | 4 | albidv 1870 | . . . 4 ⊢ (𝑥 = 𝑧 → (∀𝑓(𝑓 Fn 𝑥 → (𝐺‘𝑓) ∈ V) ↔ ∀𝑓(𝑓 Fn 𝑧 → (𝐺‘𝑓) ∈ V))) |
| 6 | tfr1on.ex | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓 Fn 𝑥) → (𝐺‘𝑓) ∈ V) | |
| 7 | 6 | 3expia 1229 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑓 Fn 𝑥 → (𝐺‘𝑓) ∈ V)) |
| 8 | 7 | alrimiv 1920 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∀𝑓(𝑓 Fn 𝑥 → (𝐺‘𝑓) ∈ V)) |
| 9 | 8 | ralrimiva 2603 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑓(𝑓 Fn 𝑥 → (𝐺‘𝑓) ∈ V)) |
| 10 | 5, 9, 1 | rspcdva 2912 | . . 3 ⊢ (𝜑 → ∀𝑓(𝑓 Fn 𝑧 → (𝐺‘𝑓) ∈ V)) |
| 11 | tfr1onlemsucfn.4 | . . 3 ⊢ (𝜑 → 𝑔 Fn 𝑧) | |
| 12 | fneq1 5408 | . . . . 5 ⊢ (𝑓 = 𝑔 → (𝑓 Fn 𝑧 ↔ 𝑔 Fn 𝑧)) | |
| 13 | fveq2 5626 | . . . . . 6 ⊢ (𝑓 = 𝑔 → (𝐺‘𝑓) = (𝐺‘𝑔)) | |
| 14 | 13 | eleq1d 2298 | . . . . 5 ⊢ (𝑓 = 𝑔 → ((𝐺‘𝑓) ∈ V ↔ (𝐺‘𝑔) ∈ V)) |
| 15 | 12, 14 | imbi12d 234 | . . . 4 ⊢ (𝑓 = 𝑔 → ((𝑓 Fn 𝑧 → (𝐺‘𝑓) ∈ V) ↔ (𝑔 Fn 𝑧 → (𝐺‘𝑔) ∈ V))) |
| 16 | 15 | spv 1906 | . . 3 ⊢ (∀𝑓(𝑓 Fn 𝑧 → (𝐺‘𝑓) ∈ V) → (𝑔 Fn 𝑧 → (𝐺‘𝑔) ∈ V)) |
| 17 | 10, 11, 16 | sylc 62 | . 2 ⊢ (𝜑 → (𝐺‘𝑔) ∈ V) |
| 18 | eqid 2229 | . 2 ⊢ (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) | |
| 19 | df-suc 4461 | . 2 ⊢ suc 𝑧 = (𝑧 ∪ {𝑧}) | |
| 20 | tfr1on.x | . . . 4 ⊢ (𝜑 → Ord 𝑋) | |
| 21 | ordelon 4473 | . . . 4 ⊢ ((Ord 𝑋 ∧ 𝑧 ∈ 𝑋) → 𝑧 ∈ On) | |
| 22 | 20, 1, 21 | syl2anc 411 | . . 3 ⊢ (𝜑 → 𝑧 ∈ On) |
| 23 | eloni 4465 | . . 3 ⊢ (𝑧 ∈ On → Ord 𝑧) | |
| 24 | ordirr 4633 | . . 3 ⊢ (Ord 𝑧 → ¬ 𝑧 ∈ 𝑧) | |
| 25 | 22, 23, 24 | 3syl 17 | . 2 ⊢ (𝜑 → ¬ 𝑧 ∈ 𝑧) |
| 26 | 2, 17, 11, 18, 19, 25 | fnunsn 5429 | 1 ⊢ (𝜑 → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) Fn suc 𝑧) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∧ w3a 1002 ∀wal 1393 = wceq 1395 ∈ wcel 2200 {cab 2215 ∀wral 2508 ∃wrex 2509 Vcvv 2799 ∪ cun 3195 {csn 3666 〈cop 3669 Ord word 4452 Oncon0 4453 suc csuc 4455 ↾ cres 4720 Fun wfun 5311 Fn wfn 5312 ‘cfv 5317 recscrecs 6448 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-setind 4628 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-suc 4461 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fn 5320 df-fv 5325 |
| This theorem is referenced by: tfr1onlemsucaccv 6485 tfr1onlembfn 6488 |
| Copyright terms: Public domain | W3C validator |