| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tfr1onlemsucfn | GIF version | ||
| Description: We can extend an acceptable function by one element to produce a function. Lemma for tfr1on 6435. (Contributed by Jim Kingdon, 12-Mar-2022.) |
| Ref | Expression |
|---|---|
| tfr1on.f | ⊢ 𝐹 = recs(𝐺) |
| tfr1on.g | ⊢ (𝜑 → Fun 𝐺) |
| tfr1on.x | ⊢ (𝜑 → Ord 𝑋) |
| tfr1on.ex | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓 Fn 𝑥) → (𝐺‘𝑓) ∈ V) |
| tfr1onlemsucfn.1 | ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} |
| tfr1onlemsucfn.3 | ⊢ (𝜑 → 𝑧 ∈ 𝑋) |
| tfr1onlemsucfn.4 | ⊢ (𝜑 → 𝑔 Fn 𝑧) |
| tfr1onlemsucfn.5 | ⊢ (𝜑 → 𝑔 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| tfr1onlemsucfn | ⊢ (𝜑 → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) Fn suc 𝑧) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfr1onlemsucfn.3 | . . 3 ⊢ (𝜑 → 𝑧 ∈ 𝑋) | |
| 2 | 1 | elexd 2784 | . 2 ⊢ (𝜑 → 𝑧 ∈ V) |
| 3 | fneq2 5362 | . . . . . 6 ⊢ (𝑥 = 𝑧 → (𝑓 Fn 𝑥 ↔ 𝑓 Fn 𝑧)) | |
| 4 | 3 | imbi1d 231 | . . . . 5 ⊢ (𝑥 = 𝑧 → ((𝑓 Fn 𝑥 → (𝐺‘𝑓) ∈ V) ↔ (𝑓 Fn 𝑧 → (𝐺‘𝑓) ∈ V))) |
| 5 | 4 | albidv 1846 | . . . 4 ⊢ (𝑥 = 𝑧 → (∀𝑓(𝑓 Fn 𝑥 → (𝐺‘𝑓) ∈ V) ↔ ∀𝑓(𝑓 Fn 𝑧 → (𝐺‘𝑓) ∈ V))) |
| 6 | tfr1on.ex | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓 Fn 𝑥) → (𝐺‘𝑓) ∈ V) | |
| 7 | 6 | 3expia 1207 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑓 Fn 𝑥 → (𝐺‘𝑓) ∈ V)) |
| 8 | 7 | alrimiv 1896 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∀𝑓(𝑓 Fn 𝑥 → (𝐺‘𝑓) ∈ V)) |
| 9 | 8 | ralrimiva 2578 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑓(𝑓 Fn 𝑥 → (𝐺‘𝑓) ∈ V)) |
| 10 | 5, 9, 1 | rspcdva 2881 | . . 3 ⊢ (𝜑 → ∀𝑓(𝑓 Fn 𝑧 → (𝐺‘𝑓) ∈ V)) |
| 11 | tfr1onlemsucfn.4 | . . 3 ⊢ (𝜑 → 𝑔 Fn 𝑧) | |
| 12 | fneq1 5361 | . . . . 5 ⊢ (𝑓 = 𝑔 → (𝑓 Fn 𝑧 ↔ 𝑔 Fn 𝑧)) | |
| 13 | fveq2 5575 | . . . . . 6 ⊢ (𝑓 = 𝑔 → (𝐺‘𝑓) = (𝐺‘𝑔)) | |
| 14 | 13 | eleq1d 2273 | . . . . 5 ⊢ (𝑓 = 𝑔 → ((𝐺‘𝑓) ∈ V ↔ (𝐺‘𝑔) ∈ V)) |
| 15 | 12, 14 | imbi12d 234 | . . . 4 ⊢ (𝑓 = 𝑔 → ((𝑓 Fn 𝑧 → (𝐺‘𝑓) ∈ V) ↔ (𝑔 Fn 𝑧 → (𝐺‘𝑔) ∈ V))) |
| 16 | 15 | spv 1882 | . . 3 ⊢ (∀𝑓(𝑓 Fn 𝑧 → (𝐺‘𝑓) ∈ V) → (𝑔 Fn 𝑧 → (𝐺‘𝑔) ∈ V)) |
| 17 | 10, 11, 16 | sylc 62 | . 2 ⊢ (𝜑 → (𝐺‘𝑔) ∈ V) |
| 18 | eqid 2204 | . 2 ⊢ (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) | |
| 19 | df-suc 4417 | . 2 ⊢ suc 𝑧 = (𝑧 ∪ {𝑧}) | |
| 20 | tfr1on.x | . . . 4 ⊢ (𝜑 → Ord 𝑋) | |
| 21 | ordelon 4429 | . . . 4 ⊢ ((Ord 𝑋 ∧ 𝑧 ∈ 𝑋) → 𝑧 ∈ On) | |
| 22 | 20, 1, 21 | syl2anc 411 | . . 3 ⊢ (𝜑 → 𝑧 ∈ On) |
| 23 | eloni 4421 | . . 3 ⊢ (𝑧 ∈ On → Ord 𝑧) | |
| 24 | ordirr 4589 | . . 3 ⊢ (Ord 𝑧 → ¬ 𝑧 ∈ 𝑧) | |
| 25 | 22, 23, 24 | 3syl 17 | . 2 ⊢ (𝜑 → ¬ 𝑧 ∈ 𝑧) |
| 26 | 2, 17, 11, 18, 19, 25 | fnunsn 5382 | 1 ⊢ (𝜑 → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) Fn suc 𝑧) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∧ w3a 980 ∀wal 1370 = wceq 1372 ∈ wcel 2175 {cab 2190 ∀wral 2483 ∃wrex 2484 Vcvv 2771 ∪ cun 3163 {csn 3632 〈cop 3635 Ord word 4408 Oncon0 4409 suc csuc 4411 ↾ cres 4676 Fun wfun 5264 Fn wfn 5265 ‘cfv 5270 recscrecs 6389 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-setind 4584 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-tr 4142 df-id 4339 df-iord 4412 df-on 4414 df-suc 4417 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-iota 5231 df-fun 5272 df-fn 5273 df-fv 5278 |
| This theorem is referenced by: tfr1onlemsucaccv 6426 tfr1onlembfn 6429 |
| Copyright terms: Public domain | W3C validator |