ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfr1onlemsucfn GIF version

Theorem tfr1onlemsucfn 6398
Description: We can extend an acceptable function by one element to produce a function. Lemma for tfr1on 6408. (Contributed by Jim Kingdon, 12-Mar-2022.)
Hypotheses
Ref Expression
tfr1on.f 𝐹 = recs(𝐺)
tfr1on.g (𝜑 → Fun 𝐺)
tfr1on.x (𝜑 → Ord 𝑋)
tfr1on.ex ((𝜑𝑥𝑋𝑓 Fn 𝑥) → (𝐺𝑓) ∈ V)
tfr1onlemsucfn.1 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
tfr1onlemsucfn.3 (𝜑𝑧𝑋)
tfr1onlemsucfn.4 (𝜑𝑔 Fn 𝑧)
tfr1onlemsucfn.5 (𝜑𝑔𝐴)
Assertion
Ref Expression
tfr1onlemsucfn (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) Fn suc 𝑧)
Distinct variable groups:   𝑓,𝐺,𝑥   𝑓,𝑋,𝑥   𝑓,𝑔   𝜑,𝑓,𝑥   𝑧,𝑓,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑔)   𝐴(𝑥,𝑦,𝑧,𝑓,𝑔)   𝐹(𝑥,𝑦,𝑧,𝑓,𝑔)   𝐺(𝑦,𝑧,𝑔)   𝑋(𝑦,𝑧,𝑔)

Proof of Theorem tfr1onlemsucfn
StepHypRef Expression
1 tfr1onlemsucfn.3 . . 3 (𝜑𝑧𝑋)
21elexd 2776 . 2 (𝜑𝑧 ∈ V)
3 fneq2 5347 . . . . . 6 (𝑥 = 𝑧 → (𝑓 Fn 𝑥𝑓 Fn 𝑧))
43imbi1d 231 . . . . 5 (𝑥 = 𝑧 → ((𝑓 Fn 𝑥 → (𝐺𝑓) ∈ V) ↔ (𝑓 Fn 𝑧 → (𝐺𝑓) ∈ V)))
54albidv 1838 . . . 4 (𝑥 = 𝑧 → (∀𝑓(𝑓 Fn 𝑥 → (𝐺𝑓) ∈ V) ↔ ∀𝑓(𝑓 Fn 𝑧 → (𝐺𝑓) ∈ V)))
6 tfr1on.ex . . . . . . 7 ((𝜑𝑥𝑋𝑓 Fn 𝑥) → (𝐺𝑓) ∈ V)
763expia 1207 . . . . . 6 ((𝜑𝑥𝑋) → (𝑓 Fn 𝑥 → (𝐺𝑓) ∈ V))
87alrimiv 1888 . . . . 5 ((𝜑𝑥𝑋) → ∀𝑓(𝑓 Fn 𝑥 → (𝐺𝑓) ∈ V))
98ralrimiva 2570 . . . 4 (𝜑 → ∀𝑥𝑋𝑓(𝑓 Fn 𝑥 → (𝐺𝑓) ∈ V))
105, 9, 1rspcdva 2873 . . 3 (𝜑 → ∀𝑓(𝑓 Fn 𝑧 → (𝐺𝑓) ∈ V))
11 tfr1onlemsucfn.4 . . 3 (𝜑𝑔 Fn 𝑧)
12 fneq1 5346 . . . . 5 (𝑓 = 𝑔 → (𝑓 Fn 𝑧𝑔 Fn 𝑧))
13 fveq2 5558 . . . . . 6 (𝑓 = 𝑔 → (𝐺𝑓) = (𝐺𝑔))
1413eleq1d 2265 . . . . 5 (𝑓 = 𝑔 → ((𝐺𝑓) ∈ V ↔ (𝐺𝑔) ∈ V))
1512, 14imbi12d 234 . . . 4 (𝑓 = 𝑔 → ((𝑓 Fn 𝑧 → (𝐺𝑓) ∈ V) ↔ (𝑔 Fn 𝑧 → (𝐺𝑔) ∈ V)))
1615spv 1874 . . 3 (∀𝑓(𝑓 Fn 𝑧 → (𝐺𝑓) ∈ V) → (𝑔 Fn 𝑧 → (𝐺𝑔) ∈ V))
1710, 11, 16sylc 62 . 2 (𝜑 → (𝐺𝑔) ∈ V)
18 eqid 2196 . 2 (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})
19 df-suc 4406 . 2 suc 𝑧 = (𝑧 ∪ {𝑧})
20 tfr1on.x . . . 4 (𝜑 → Ord 𝑋)
21 ordelon 4418 . . . 4 ((Ord 𝑋𝑧𝑋) → 𝑧 ∈ On)
2220, 1, 21syl2anc 411 . . 3 (𝜑𝑧 ∈ On)
23 eloni 4410 . . 3 (𝑧 ∈ On → Ord 𝑧)
24 ordirr 4578 . . 3 (Ord 𝑧 → ¬ 𝑧𝑧)
2522, 23, 243syl 17 . 2 (𝜑 → ¬ 𝑧𝑧)
262, 17, 11, 18, 19, 25fnunsn 5365 1 (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) Fn suc 𝑧)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  w3a 980  wal 1362   = wceq 1364  wcel 2167  {cab 2182  wral 2475  wrex 2476  Vcvv 2763  cun 3155  {csn 3622  cop 3625  Ord word 4397  Oncon0 4398  suc csuc 4400  cres 4665  Fun wfun 5252   Fn wfn 5253  cfv 5258  recscrecs 6362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266
This theorem is referenced by:  tfr1onlemsucaccv  6399  tfr1onlembfn  6402
  Copyright terms: Public domain W3C validator