ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfr1onlemsucfn GIF version

Theorem tfr1onlemsucfn 6338
Description: We can extend an acceptable function by one element to produce a function. Lemma for tfr1on 6348. (Contributed by Jim Kingdon, 12-Mar-2022.)
Hypotheses
Ref Expression
tfr1on.f 𝐹 = recs(𝐺)
tfr1on.g (𝜑 → Fun 𝐺)
tfr1on.x (𝜑 → Ord 𝑋)
tfr1on.ex ((𝜑𝑥𝑋𝑓 Fn 𝑥) → (𝐺𝑓) ∈ V)
tfr1onlemsucfn.1 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
tfr1onlemsucfn.3 (𝜑𝑧𝑋)
tfr1onlemsucfn.4 (𝜑𝑔 Fn 𝑧)
tfr1onlemsucfn.5 (𝜑𝑔𝐴)
Assertion
Ref Expression
tfr1onlemsucfn (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) Fn suc 𝑧)
Distinct variable groups:   𝑓,𝐺,𝑥   𝑓,𝑋,𝑥   𝑓,𝑔   𝜑,𝑓,𝑥   𝑧,𝑓,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑔)   𝐴(𝑥,𝑦,𝑧,𝑓,𝑔)   𝐹(𝑥,𝑦,𝑧,𝑓,𝑔)   𝐺(𝑦,𝑧,𝑔)   𝑋(𝑦,𝑧,𝑔)

Proof of Theorem tfr1onlemsucfn
StepHypRef Expression
1 tfr1onlemsucfn.3 . . 3 (𝜑𝑧𝑋)
21elexd 2750 . 2 (𝜑𝑧 ∈ V)
3 fneq2 5304 . . . . . 6 (𝑥 = 𝑧 → (𝑓 Fn 𝑥𝑓 Fn 𝑧))
43imbi1d 231 . . . . 5 (𝑥 = 𝑧 → ((𝑓 Fn 𝑥 → (𝐺𝑓) ∈ V) ↔ (𝑓 Fn 𝑧 → (𝐺𝑓) ∈ V)))
54albidv 1824 . . . 4 (𝑥 = 𝑧 → (∀𝑓(𝑓 Fn 𝑥 → (𝐺𝑓) ∈ V) ↔ ∀𝑓(𝑓 Fn 𝑧 → (𝐺𝑓) ∈ V)))
6 tfr1on.ex . . . . . . 7 ((𝜑𝑥𝑋𝑓 Fn 𝑥) → (𝐺𝑓) ∈ V)
763expia 1205 . . . . . 6 ((𝜑𝑥𝑋) → (𝑓 Fn 𝑥 → (𝐺𝑓) ∈ V))
87alrimiv 1874 . . . . 5 ((𝜑𝑥𝑋) → ∀𝑓(𝑓 Fn 𝑥 → (𝐺𝑓) ∈ V))
98ralrimiva 2550 . . . 4 (𝜑 → ∀𝑥𝑋𝑓(𝑓 Fn 𝑥 → (𝐺𝑓) ∈ V))
105, 9, 1rspcdva 2846 . . 3 (𝜑 → ∀𝑓(𝑓 Fn 𝑧 → (𝐺𝑓) ∈ V))
11 tfr1onlemsucfn.4 . . 3 (𝜑𝑔 Fn 𝑧)
12 fneq1 5303 . . . . 5 (𝑓 = 𝑔 → (𝑓 Fn 𝑧𝑔 Fn 𝑧))
13 fveq2 5514 . . . . . 6 (𝑓 = 𝑔 → (𝐺𝑓) = (𝐺𝑔))
1413eleq1d 2246 . . . . 5 (𝑓 = 𝑔 → ((𝐺𝑓) ∈ V ↔ (𝐺𝑔) ∈ V))
1512, 14imbi12d 234 . . . 4 (𝑓 = 𝑔 → ((𝑓 Fn 𝑧 → (𝐺𝑓) ∈ V) ↔ (𝑔 Fn 𝑧 → (𝐺𝑔) ∈ V)))
1615spv 1860 . . 3 (∀𝑓(𝑓 Fn 𝑧 → (𝐺𝑓) ∈ V) → (𝑔 Fn 𝑧 → (𝐺𝑔) ∈ V))
1710, 11, 16sylc 62 . 2 (𝜑 → (𝐺𝑔) ∈ V)
18 eqid 2177 . 2 (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})
19 df-suc 4370 . 2 suc 𝑧 = (𝑧 ∪ {𝑧})
20 tfr1on.x . . . 4 (𝜑 → Ord 𝑋)
21 ordelon 4382 . . . 4 ((Ord 𝑋𝑧𝑋) → 𝑧 ∈ On)
2220, 1, 21syl2anc 411 . . 3 (𝜑𝑧 ∈ On)
23 eloni 4374 . . 3 (𝑧 ∈ On → Ord 𝑧)
24 ordirr 4540 . . 3 (Ord 𝑧 → ¬ 𝑧𝑧)
2522, 23, 243syl 17 . 2 (𝜑 → ¬ 𝑧𝑧)
262, 17, 11, 18, 19, 25fnunsn 5322 1 (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) Fn suc 𝑧)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  w3a 978  wal 1351   = wceq 1353  wcel 2148  {cab 2163  wral 2455  wrex 2456  Vcvv 2737  cun 3127  {csn 3592  cop 3595  Ord word 4361  Oncon0 4362  suc csuc 4364  cres 4627  Fun wfun 5209   Fn wfn 5210  cfv 5215  recscrecs 6302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4120  ax-pow 4173  ax-pr 4208  ax-setind 4535
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-v 2739  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-br 4003  df-opab 4064  df-tr 4101  df-id 4292  df-iord 4365  df-on 4367  df-suc 4370  df-xp 4631  df-rel 4632  df-cnv 4633  df-co 4634  df-dm 4635  df-iota 5177  df-fun 5217  df-fn 5218  df-fv 5223
This theorem is referenced by:  tfr1onlemsucaccv  6339  tfr1onlembfn  6342
  Copyright terms: Public domain W3C validator