![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > tfr1onlemsucfn | GIF version |
Description: We can extend an acceptable function by one element to produce a function. Lemma for tfr1on 6353. (Contributed by Jim Kingdon, 12-Mar-2022.) |
Ref | Expression |
---|---|
tfr1on.f | ⊢ 𝐹 = recs(𝐺) |
tfr1on.g | ⊢ (𝜑 → Fun 𝐺) |
tfr1on.x | ⊢ (𝜑 → Ord 𝑋) |
tfr1on.ex | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓 Fn 𝑥) → (𝐺‘𝑓) ∈ V) |
tfr1onlemsucfn.1 | ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} |
tfr1onlemsucfn.3 | ⊢ (𝜑 → 𝑧 ∈ 𝑋) |
tfr1onlemsucfn.4 | ⊢ (𝜑 → 𝑔 Fn 𝑧) |
tfr1onlemsucfn.5 | ⊢ (𝜑 → 𝑔 ∈ 𝐴) |
Ref | Expression |
---|---|
tfr1onlemsucfn | ⊢ (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐺‘𝑔)⟩}) Fn suc 𝑧) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfr1onlemsucfn.3 | . . 3 ⊢ (𝜑 → 𝑧 ∈ 𝑋) | |
2 | 1 | elexd 2752 | . 2 ⊢ (𝜑 → 𝑧 ∈ V) |
3 | fneq2 5307 | . . . . . 6 ⊢ (𝑥 = 𝑧 → (𝑓 Fn 𝑥 ↔ 𝑓 Fn 𝑧)) | |
4 | 3 | imbi1d 231 | . . . . 5 ⊢ (𝑥 = 𝑧 → ((𝑓 Fn 𝑥 → (𝐺‘𝑓) ∈ V) ↔ (𝑓 Fn 𝑧 → (𝐺‘𝑓) ∈ V))) |
5 | 4 | albidv 1824 | . . . 4 ⊢ (𝑥 = 𝑧 → (∀𝑓(𝑓 Fn 𝑥 → (𝐺‘𝑓) ∈ V) ↔ ∀𝑓(𝑓 Fn 𝑧 → (𝐺‘𝑓) ∈ V))) |
6 | tfr1on.ex | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓 Fn 𝑥) → (𝐺‘𝑓) ∈ V) | |
7 | 6 | 3expia 1205 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑓 Fn 𝑥 → (𝐺‘𝑓) ∈ V)) |
8 | 7 | alrimiv 1874 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∀𝑓(𝑓 Fn 𝑥 → (𝐺‘𝑓) ∈ V)) |
9 | 8 | ralrimiva 2550 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑓(𝑓 Fn 𝑥 → (𝐺‘𝑓) ∈ V)) |
10 | 5, 9, 1 | rspcdva 2848 | . . 3 ⊢ (𝜑 → ∀𝑓(𝑓 Fn 𝑧 → (𝐺‘𝑓) ∈ V)) |
11 | tfr1onlemsucfn.4 | . . 3 ⊢ (𝜑 → 𝑔 Fn 𝑧) | |
12 | fneq1 5306 | . . . . 5 ⊢ (𝑓 = 𝑔 → (𝑓 Fn 𝑧 ↔ 𝑔 Fn 𝑧)) | |
13 | fveq2 5517 | . . . . . 6 ⊢ (𝑓 = 𝑔 → (𝐺‘𝑓) = (𝐺‘𝑔)) | |
14 | 13 | eleq1d 2246 | . . . . 5 ⊢ (𝑓 = 𝑔 → ((𝐺‘𝑓) ∈ V ↔ (𝐺‘𝑔) ∈ V)) |
15 | 12, 14 | imbi12d 234 | . . . 4 ⊢ (𝑓 = 𝑔 → ((𝑓 Fn 𝑧 → (𝐺‘𝑓) ∈ V) ↔ (𝑔 Fn 𝑧 → (𝐺‘𝑔) ∈ V))) |
16 | 15 | spv 1860 | . . 3 ⊢ (∀𝑓(𝑓 Fn 𝑧 → (𝐺‘𝑓) ∈ V) → (𝑔 Fn 𝑧 → (𝐺‘𝑔) ∈ V)) |
17 | 10, 11, 16 | sylc 62 | . 2 ⊢ (𝜑 → (𝐺‘𝑔) ∈ V) |
18 | eqid 2177 | . 2 ⊢ (𝑔 ∪ {⟨𝑧, (𝐺‘𝑔)⟩}) = (𝑔 ∪ {⟨𝑧, (𝐺‘𝑔)⟩}) | |
19 | df-suc 4373 | . 2 ⊢ suc 𝑧 = (𝑧 ∪ {𝑧}) | |
20 | tfr1on.x | . . . 4 ⊢ (𝜑 → Ord 𝑋) | |
21 | ordelon 4385 | . . . 4 ⊢ ((Ord 𝑋 ∧ 𝑧 ∈ 𝑋) → 𝑧 ∈ On) | |
22 | 20, 1, 21 | syl2anc 411 | . . 3 ⊢ (𝜑 → 𝑧 ∈ On) |
23 | eloni 4377 | . . 3 ⊢ (𝑧 ∈ On → Ord 𝑧) | |
24 | ordirr 4543 | . . 3 ⊢ (Ord 𝑧 → ¬ 𝑧 ∈ 𝑧) | |
25 | 22, 23, 24 | 3syl 17 | . 2 ⊢ (𝜑 → ¬ 𝑧 ∈ 𝑧) |
26 | 2, 17, 11, 18, 19, 25 | fnunsn 5325 | 1 ⊢ (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐺‘𝑔)⟩}) Fn suc 𝑧) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∧ w3a 978 ∀wal 1351 = wceq 1353 ∈ wcel 2148 {cab 2163 ∀wral 2455 ∃wrex 2456 Vcvv 2739 ∪ cun 3129 {csn 3594 ⟨cop 3597 Ord word 4364 Oncon0 4365 suc csuc 4367 ↾ cres 4630 Fun wfun 5212 Fn wfn 5213 ‘cfv 5218 recscrecs 6307 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-setind 4538 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-v 2741 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-tr 4104 df-id 4295 df-iord 4368 df-on 4370 df-suc 4373 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-iota 5180 df-fun 5220 df-fn 5221 df-fv 5226 |
This theorem is referenced by: tfr1onlemsucaccv 6344 tfr1onlembfn 6347 |
Copyright terms: Public domain | W3C validator |