![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lspsneq0 | GIF version |
Description: Span of the singleton is the zero subspace iff the vector is zero. (Contributed by NM, 27-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lspsneq0.v | ⊢ 𝑉 = (Base‘𝑊) |
lspsneq0.z | ⊢ 0 = (0g‘𝑊) |
lspsneq0.n | ⊢ 𝑁 = (LSpan‘𝑊) |
Ref | Expression |
---|---|
lspsneq0 | ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((𝑁‘{𝑋}) = { 0 } ↔ 𝑋 = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspsneq0.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
2 | lspsneq0.n | . . . . 5 ⊢ 𝑁 = (LSpan‘𝑊) | |
3 | 1, 2 | lspsnid 13716 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ (𝑁‘{𝑋})) |
4 | eleq2 2253 | . . . 4 ⊢ ((𝑁‘{𝑋}) = { 0 } → (𝑋 ∈ (𝑁‘{𝑋}) ↔ 𝑋 ∈ { 0 })) | |
5 | 3, 4 | syl5ibcom 155 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((𝑁‘{𝑋}) = { 0 } → 𝑋 ∈ { 0 })) |
6 | elsni 3625 | . . 3 ⊢ (𝑋 ∈ { 0 } → 𝑋 = 0 ) | |
7 | 5, 6 | syl6 33 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((𝑁‘{𝑋}) = { 0 } → 𝑋 = 0 )) |
8 | lspsneq0.z | . . . . 5 ⊢ 0 = (0g‘𝑊) | |
9 | 8, 2 | lspsn0 13731 | . . . 4 ⊢ (𝑊 ∈ LMod → (𝑁‘{ 0 }) = { 0 }) |
10 | 9 | adantr 276 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{ 0 }) = { 0 }) |
11 | sneq 3618 | . . . 4 ⊢ (𝑋 = 0 → {𝑋} = { 0 }) | |
12 | 11 | fveqeq2d 5539 | . . 3 ⊢ (𝑋 = 0 → ((𝑁‘{𝑋}) = { 0 } ↔ (𝑁‘{ 0 }) = { 0 })) |
13 | 10, 12 | syl5ibrcom 157 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑋 = 0 → (𝑁‘{𝑋}) = { 0 })) |
14 | 7, 13 | impbid 129 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((𝑁‘{𝑋}) = { 0 } ↔ 𝑋 = 0 )) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2160 {csn 3607 ‘cfv 5232 Basecbs 12507 0gc0g 12754 LModclmod 13596 LSpanclspn 13695 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-pow 4189 ax-pr 4224 ax-un 4448 ax-setind 4551 ax-cnex 7927 ax-resscn 7928 ax-1cn 7929 ax-1re 7930 ax-icn 7931 ax-addcl 7932 ax-addrcl 7933 ax-mulcl 7934 ax-addcom 7936 ax-addass 7938 ax-i2m1 7941 ax-0lt1 7942 ax-0id 7944 ax-rnegex 7945 ax-pre-ltirr 7948 ax-pre-ltadd 7952 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4308 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-rn 4652 df-res 4653 df-ima 4654 df-iota 5193 df-fun 5234 df-fn 5235 df-f 5236 df-f1 5237 df-fo 5238 df-f1o 5239 df-fv 5240 df-riota 5848 df-ov 5895 df-oprab 5896 df-mpo 5897 df-pnf 8019 df-mnf 8020 df-ltxr 8022 df-inn 8945 df-2 9003 df-3 9004 df-4 9005 df-5 9006 df-6 9007 df-ndx 12510 df-slot 12511 df-base 12513 df-sets 12514 df-plusg 12595 df-mulr 12596 df-sca 12598 df-vsca 12599 df-0g 12756 df-mgm 12825 df-sgrp 12858 df-mnd 12871 df-grp 12941 df-mgp 13268 df-ring 13345 df-lmod 13598 df-lssm 13662 df-lsp 13696 |
This theorem is referenced by: lspsneq0b 13736 |
Copyright terms: Public domain | W3C validator |