ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fveqeq2 GIF version

Theorem fveqeq2 5505
Description: Equality deduction for function value. (Contributed by BJ, 31-Aug-2022.)
Assertion
Ref Expression
fveqeq2 (𝐴 = 𝐵 → ((𝐹𝐴) = 𝐶 ↔ (𝐹𝐵) = 𝐶))

Proof of Theorem fveqeq2
StepHypRef Expression
1 id 19 . 2 (𝐴 = 𝐵𝐴 = 𝐵)
21fveqeq2d 5504 1 (𝐴 = 𝐵 → ((𝐹𝐴) = 𝐶 ↔ (𝐹𝐵) = 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1348  cfv 5198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-iota 5160  df-fv 5206
This theorem is referenced by:  nnnninfeq2  7105  fodjum  7122  fodju0  7123  fodjuomnilemres  7124  fodjumkvlemres  7135  fodjumkv  7136  enmkvlem  7137  enwomnilem  7145  nninfwlporlemd  7148  nninfwlpoimlemginf  7152  nninfwlpoim  7154  seq3id3  10463  seq3id2  10465  seq3z  10467  fsum3cvg  11341  summodclem2a  11344  fproddccvg  11535  algfx  12006  ennnfonelemim  12379  reeff1oleme  13487  sin0pilem2  13497  bj-charfunbi  13846  nninfomnilem  14051  trilpolemlt1  14073  redcwlpolemeq1  14086  nconstwlpolem0  14094  nconstwlpolem  14096  neapmkvlem  14098
  Copyright terms: Public domain W3C validator