| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fveqeq2 | GIF version | ||
| Description: Equality deduction for function value. (Contributed by BJ, 31-Aug-2022.) |
| Ref | Expression |
|---|---|
| fveqeq2 | ⊢ (𝐴 = 𝐵 → ((𝐹‘𝐴) = 𝐶 ↔ (𝐹‘𝐵) = 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
| 2 | 1 | fveqeq2d 5569 | 1 ⊢ (𝐴 = 𝐵 → ((𝐹‘𝐴) = 𝐶 ↔ (𝐹‘𝐵) = 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ‘cfv 5259 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 |
| This theorem is referenced by: uchoice 6204 nninfninc 7198 nnnninfeq2 7204 fodjum 7221 fodju0 7222 fodjuomnilemres 7223 fodjumkvlemres 7234 fodjumkv 7235 enmkvlem 7236 enwomnilem 7244 nninfwlporlemd 7247 nninfwlpoimlemginf 7251 nninfwlpoim 7254 nninfinfwlpo 7255 seq3id3 10635 seq3id2 10637 seq3z 10639 wrdmap 10985 fsum3cvg 11562 summodclem2a 11565 fproddccvg 11756 nninfctlemfo 12234 algfx 12247 ennnfonelemim 12668 gsumfzz 13199 ghmf1 13481 mplsubgfilemcl 14333 ivthreinc 14989 ivthdich 14997 reeff1oleme 15116 sin0pilem2 15126 lgsquadlem1 15426 bj-charfunbi 15565 2omap 15750 nninfomnilem 15773 nnnninfex 15777 trilpolemlt1 15798 redcwlpolemeq1 15811 nconstwlpolem0 15820 nconstwlpolem 15822 neapmkvlem 15824 |
| Copyright terms: Public domain | W3C validator |