![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fveqeq2 | GIF version |
Description: Equality deduction for function value. (Contributed by BJ, 31-Aug-2022.) |
Ref | Expression |
---|---|
fveqeq2 | ⊢ (𝐴 = 𝐵 → ((𝐹‘𝐴) = 𝐶 ↔ (𝐹‘𝐵) = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
2 | 1 | fveqeq2d 5562 | 1 ⊢ (𝐴 = 𝐵 → ((𝐹‘𝐴) = 𝐶 ↔ (𝐹‘𝐵) = 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ‘cfv 5254 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-v 2762 df-un 3157 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-iota 5215 df-fv 5262 |
This theorem is referenced by: uchoice 6190 nninfninc 7182 nnnninfeq2 7188 fodjum 7205 fodju0 7206 fodjuomnilemres 7207 fodjumkvlemres 7218 fodjumkv 7219 enmkvlem 7220 enwomnilem 7228 nninfwlporlemd 7231 nninfwlpoimlemginf 7235 nninfwlpoim 7237 seq3id3 10595 seq3id2 10597 seq3z 10599 wrdmap 10945 fsum3cvg 11521 summodclem2a 11524 fproddccvg 11715 nninfctlemfo 12177 algfx 12190 ennnfonelemim 12581 gsumfzz 13067 ghmf1 13343 ivthreinc 14799 ivthdich 14807 reeff1oleme 14907 sin0pilem2 14917 lgsquadlem1 15191 bj-charfunbi 15303 nninfomnilem 15508 trilpolemlt1 15531 redcwlpolemeq1 15544 nconstwlpolem0 15553 nconstwlpolem 15555 neapmkvlem 15557 |
Copyright terms: Public domain | W3C validator |