| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fveqeq2 | GIF version | ||
| Description: Equality deduction for function value. (Contributed by BJ, 31-Aug-2022.) |
| Ref | Expression |
|---|---|
| fveqeq2 | ⊢ (𝐴 = 𝐵 → ((𝐹‘𝐴) = 𝐶 ↔ (𝐹‘𝐵) = 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
| 2 | 1 | fveqeq2d 5607 | 1 ⊢ (𝐴 = 𝐵 → ((𝐹‘𝐴) = 𝐶 ↔ (𝐹‘𝐵) = 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ‘cfv 5290 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rex 2492 df-v 2778 df-un 3178 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-iota 5251 df-fv 5298 |
| This theorem is referenced by: uchoice 6246 nninfninc 7251 nnnninfeq2 7257 fodjum 7274 fodju0 7275 fodjuomnilemres 7276 fodjumkvlemres 7287 fodjumkv 7288 enmkvlem 7289 enwomnilem 7297 nninfwlporlemd 7300 nninfwlpoimlemginf 7304 nninfwlpoim 7307 nninfinfwlpo 7308 seq3id3 10706 seq3id2 10708 seq3z 10710 wrdmap 11062 wrdl1s1 11122 wrdind 11213 wrd2ind 11214 reuccatpfxs1lem 11237 reuccatpfxs1 11238 fsum3cvg 11804 summodclem2a 11807 fproddccvg 11998 nninfctlemfo 12476 algfx 12489 ennnfonelemim 12910 gsumfzz 13442 ghmf1 13724 mplsubgfilemcl 14576 ivthreinc 15232 ivthdich 15240 reeff1oleme 15359 sin0pilem2 15369 lgsquadlem1 15669 gropd 15761 grstructd2dom 15762 bj-charfunbi 15946 2omap 16132 pw1map 16134 nninfomnilem 16157 nnnninfex 16161 trilpolemlt1 16182 redcwlpolemeq1 16195 nconstwlpolem0 16204 nconstwlpolem 16206 neapmkvlem 16208 |
| Copyright terms: Public domain | W3C validator |