![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fveqeq2 | GIF version |
Description: Equality deduction for function value. (Contributed by BJ, 31-Aug-2022.) |
Ref | Expression |
---|---|
fveqeq2 | ⊢ (𝐴 = 𝐵 → ((𝐹‘𝐴) = 𝐶 ↔ (𝐹‘𝐵) = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
2 | 1 | fveqeq2d 5535 | 1 ⊢ (𝐴 = 𝐵 → ((𝐹‘𝐴) = 𝐶 ↔ (𝐹‘𝐵) = 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1363 ‘cfv 5228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2169 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-rex 2471 df-v 2751 df-un 3145 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-br 4016 df-iota 5190 df-fv 5236 |
This theorem is referenced by: nnnninfeq2 7141 fodjum 7158 fodju0 7159 fodjuomnilemres 7160 fodjumkvlemres 7171 fodjumkv 7172 enmkvlem 7173 enwomnilem 7181 nninfwlporlemd 7184 nninfwlpoimlemginf 7188 nninfwlpoim 7190 seq3id3 10521 seq3id2 10523 seq3z 10525 fsum3cvg 11400 summodclem2a 11403 fproddccvg 11594 algfx 12066 ennnfonelemim 12439 reeff1oleme 14489 sin0pilem2 14499 bj-charfunbi 14859 nninfomnilem 15064 trilpolemlt1 15086 redcwlpolemeq1 15099 nconstwlpolem0 15108 nconstwlpolem 15110 neapmkvlem 15112 |
Copyright terms: Public domain | W3C validator |