Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fveqeq2 | GIF version |
Description: Equality deduction for function value. (Contributed by BJ, 31-Aug-2022.) |
Ref | Expression |
---|---|
fveqeq2 | ⊢ (𝐴 = 𝐵 → ((𝐹‘𝐴) = 𝐶 ↔ (𝐹‘𝐵) = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
2 | 1 | fveqeq2d 5504 | 1 ⊢ (𝐴 = 𝐵 → ((𝐹‘𝐴) = 𝐶 ↔ (𝐹‘𝐵) = 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1348 ‘cfv 5198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-v 2732 df-un 3125 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-iota 5160 df-fv 5206 |
This theorem is referenced by: nnnninfeq2 7105 fodjum 7122 fodju0 7123 fodjuomnilemres 7124 fodjumkvlemres 7135 fodjumkv 7136 enmkvlem 7137 enwomnilem 7145 nninfwlporlemd 7148 nninfwlpoimlemginf 7152 nninfwlpoim 7154 seq3id3 10463 seq3id2 10465 seq3z 10467 fsum3cvg 11341 summodclem2a 11344 fproddccvg 11535 algfx 12006 ennnfonelemim 12379 reeff1oleme 13487 sin0pilem2 13497 bj-charfunbi 13846 nninfomnilem 14051 trilpolemlt1 14073 redcwlpolemeq1 14086 nconstwlpolem0 14094 nconstwlpolem 14096 neapmkvlem 14098 |
Copyright terms: Public domain | W3C validator |