ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fveqeq2 GIF version

Theorem fveqeq2 5536
Description: Equality deduction for function value. (Contributed by BJ, 31-Aug-2022.)
Assertion
Ref Expression
fveqeq2 (𝐴 = 𝐵 → ((𝐹𝐴) = 𝐶 ↔ (𝐹𝐵) = 𝐶))

Proof of Theorem fveqeq2
StepHypRef Expression
1 id 19 . 2 (𝐴 = 𝐵𝐴 = 𝐵)
21fveqeq2d 5535 1 (𝐴 = 𝐵 → ((𝐹𝐴) = 𝐶 ↔ (𝐹𝐵) = 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1363  cfv 5228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-rex 2471  df-v 2751  df-un 3145  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-iota 5190  df-fv 5236
This theorem is referenced by:  nnnninfeq2  7141  fodjum  7158  fodju0  7159  fodjuomnilemres  7160  fodjumkvlemres  7171  fodjumkv  7172  enmkvlem  7173  enwomnilem  7181  nninfwlporlemd  7184  nninfwlpoimlemginf  7188  nninfwlpoim  7190  seq3id3  10521  seq3id2  10523  seq3z  10525  fsum3cvg  11400  summodclem2a  11403  fproddccvg  11594  algfx  12066  ennnfonelemim  12439  reeff1oleme  14489  sin0pilem2  14499  bj-charfunbi  14859  nninfomnilem  15064  trilpolemlt1  15086  redcwlpolemeq1  15099  nconstwlpolem0  15108  nconstwlpolem  15110  neapmkvlem  15112
  Copyright terms: Public domain W3C validator