Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fveqeq2 | GIF version |
Description: Equality deduction for function value. (Contributed by BJ, 31-Aug-2022.) |
Ref | Expression |
---|---|
fveqeq2 | ⊢ (𝐴 = 𝐵 → ((𝐹‘𝐴) = 𝐶 ↔ (𝐹‘𝐵) = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
2 | 1 | fveqeq2d 5473 | 1 ⊢ (𝐴 = 𝐵 → ((𝐹‘𝐴) = 𝐶 ↔ (𝐹‘𝐵) = 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1335 ‘cfv 5167 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-rex 2441 df-v 2714 df-un 3106 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-iota 5132 df-fv 5175 |
This theorem is referenced by: fodjum 7072 fodju0 7073 fodjuomnilemres 7074 fodjumkvlemres 7085 fodjumkv 7086 enmkvlem 7087 enwomnilem 7095 seq3id3 10388 seq3id2 10390 seq3z 10392 fsum3cvg 11257 summodclem2a 11260 fproddccvg 11451 algfx 11909 ennnfonelemim 12125 reeff1oleme 13053 sin0pilem2 13063 bj-charfunbi 13345 nninfomnilem 13552 trilpolemlt1 13574 redcwlpolemeq1 13587 nconstwlpolem0 13595 nconstwlpolem 13597 neapmkvlem 13599 |
Copyright terms: Public domain | W3C validator |