| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fveqeq2 | GIF version | ||
| Description: Equality deduction for function value. (Contributed by BJ, 31-Aug-2022.) |
| Ref | Expression |
|---|---|
| fveqeq2 | ⊢ (𝐴 = 𝐵 → ((𝐹‘𝐴) = 𝐶 ↔ (𝐹‘𝐵) = 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
| 2 | 1 | fveqeq2d 5584 | 1 ⊢ (𝐴 = 𝐵 → ((𝐹‘𝐴) = 𝐶 ↔ (𝐹‘𝐵) = 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ‘cfv 5271 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-iota 5232 df-fv 5279 |
| This theorem is referenced by: uchoice 6223 nninfninc 7225 nnnninfeq2 7231 fodjum 7248 fodju0 7249 fodjuomnilemres 7250 fodjumkvlemres 7261 fodjumkv 7262 enmkvlem 7263 enwomnilem 7271 nninfwlporlemd 7274 nninfwlpoimlemginf 7278 nninfwlpoim 7281 nninfinfwlpo 7282 seq3id3 10669 seq3id2 10671 seq3z 10673 wrdmap 11025 wrdl1s1 11084 fsum3cvg 11689 summodclem2a 11692 fproddccvg 11883 nninfctlemfo 12361 algfx 12374 ennnfonelemim 12795 gsumfzz 13327 ghmf1 13609 mplsubgfilemcl 14461 ivthreinc 15117 ivthdich 15125 reeff1oleme 15244 sin0pilem2 15254 lgsquadlem1 15554 gropd 15644 grstructd2dom 15645 bj-charfunbi 15747 2omap 15932 nninfomnilem 15955 nnnninfex 15959 trilpolemlt1 15980 redcwlpolemeq1 15993 nconstwlpolem0 16002 nconstwlpolem 16004 neapmkvlem 16006 |
| Copyright terms: Public domain | W3C validator |