Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fveqeq2 | GIF version |
Description: Equality deduction for function value. (Contributed by BJ, 31-Aug-2022.) |
Ref | Expression |
---|---|
fveqeq2 | ⊢ (𝐴 = 𝐵 → ((𝐹‘𝐴) = 𝐶 ↔ (𝐹‘𝐵) = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
2 | 1 | fveqeq2d 5494 | 1 ⊢ (𝐴 = 𝐵 → ((𝐹‘𝐴) = 𝐶 ↔ (𝐹‘𝐵) = 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1343 ‘cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-iota 5153 df-fv 5196 |
This theorem is referenced by: nnnninfeq2 7093 fodjum 7110 fodju0 7111 fodjuomnilemres 7112 fodjumkvlemres 7123 fodjumkv 7124 enmkvlem 7125 enwomnilem 7133 seq3id3 10442 seq3id2 10444 seq3z 10446 fsum3cvg 11319 summodclem2a 11322 fproddccvg 11513 algfx 11984 ennnfonelemim 12357 reeff1oleme 13333 sin0pilem2 13343 bj-charfunbi 13693 nninfomnilem 13898 trilpolemlt1 13920 redcwlpolemeq1 13933 nconstwlpolem0 13941 nconstwlpolem 13943 neapmkvlem 13945 |
Copyright terms: Public domain | W3C validator |