| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fveqeq2 | GIF version | ||
| Description: Equality deduction for function value. (Contributed by BJ, 31-Aug-2022.) |
| Ref | Expression |
|---|---|
| fveqeq2 | ⊢ (𝐴 = 𝐵 → ((𝐹‘𝐴) = 𝐶 ↔ (𝐹‘𝐵) = 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
| 2 | 1 | fveqeq2d 5586 | 1 ⊢ (𝐴 = 𝐵 → ((𝐹‘𝐴) = 𝐶 ↔ (𝐹‘𝐵) = 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ‘cfv 5272 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-iota 5233 df-fv 5280 |
| This theorem is referenced by: uchoice 6225 nninfninc 7227 nnnninfeq2 7233 fodjum 7250 fodju0 7251 fodjuomnilemres 7252 fodjumkvlemres 7263 fodjumkv 7264 enmkvlem 7265 enwomnilem 7273 nninfwlporlemd 7276 nninfwlpoimlemginf 7280 nninfwlpoim 7283 nninfinfwlpo 7284 seq3id3 10671 seq3id2 10673 seq3z 10675 wrdmap 11027 wrdl1s1 11087 fsum3cvg 11722 summodclem2a 11725 fproddccvg 11916 nninfctlemfo 12394 algfx 12407 ennnfonelemim 12828 gsumfzz 13360 ghmf1 13642 mplsubgfilemcl 14494 ivthreinc 15150 ivthdich 15158 reeff1oleme 15277 sin0pilem2 15287 lgsquadlem1 15587 gropd 15677 grstructd2dom 15678 bj-charfunbi 15784 2omap 15969 nninfomnilem 15992 nnnninfex 15996 trilpolemlt1 16017 redcwlpolemeq1 16030 nconstwlpolem0 16039 nconstwlpolem 16041 neapmkvlem 16043 |
| Copyright terms: Public domain | W3C validator |