| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fveqeq2 | GIF version | ||
| Description: Equality deduction for function value. (Contributed by BJ, 31-Aug-2022.) |
| Ref | Expression |
|---|---|
| fveqeq2 | ⊢ (𝐴 = 𝐵 → ((𝐹‘𝐴) = 𝐶 ↔ (𝐹‘𝐵) = 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
| 2 | 1 | fveqeq2d 5566 | 1 ⊢ (𝐴 = 𝐵 → ((𝐹‘𝐴) = 𝐶 ↔ (𝐹‘𝐵) = 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ‘cfv 5258 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-iota 5219 df-fv 5266 |
| This theorem is referenced by: uchoice 6195 nninfninc 7189 nnnninfeq2 7195 fodjum 7212 fodju0 7213 fodjuomnilemres 7214 fodjumkvlemres 7225 fodjumkv 7226 enmkvlem 7227 enwomnilem 7235 nninfwlporlemd 7238 nninfwlpoimlemginf 7242 nninfwlpoim 7244 seq3id3 10616 seq3id2 10618 seq3z 10620 wrdmap 10966 fsum3cvg 11543 summodclem2a 11546 fproddccvg 11737 nninfctlemfo 12207 algfx 12220 ennnfonelemim 12641 gsumfzz 13127 ghmf1 13403 ivthreinc 14881 ivthdich 14889 reeff1oleme 15008 sin0pilem2 15018 lgsquadlem1 15318 bj-charfunbi 15457 nninfomnilem 15662 trilpolemlt1 15685 redcwlpolemeq1 15698 nconstwlpolem0 15707 nconstwlpolem 15709 neapmkvlem 15711 |
| Copyright terms: Public domain | W3C validator |