Step | Hyp | Ref
| Expression |
1 | | simpl3 1002 |
. . . . 5
β’ (((π β LMod β§ π β π β§ π β π) β§ π‘ β (LSubSpβπ)) β π β π) |
2 | | sstr2 3164 |
. . . . 5
β’ (π β π β (π β π‘ β π β π‘)) |
3 | 1, 2 | syl 14 |
. . . 4
β’ (((π β LMod β§ π β π β§ π β π) β§ π‘ β (LSubSpβπ)) β (π β π‘ β π β π‘)) |
4 | 3 | ss2rabdv 3238 |
. . 3
β’ ((π β LMod β§ π β π β§ π β π) β {π‘ β (LSubSpβπ) β£ π β π‘} β {π‘ β (LSubSpβπ) β£ π β π‘}) |
5 | | intss 3867 |
. . 3
β’ ({π‘ β (LSubSpβπ) β£ π β π‘} β {π‘ β (LSubSpβπ) β£ π β π‘} β β© {π‘ β (LSubSpβπ) β£ π β π‘} β β© {π‘ β (LSubSpβπ) β£ π β π‘}) |
6 | 4, 5 | syl 14 |
. 2
β’ ((π β LMod β§ π β π β§ π β π) β β© {π‘ β (LSubSpβπ) β£ π β π‘} β β© {π‘ β (LSubSpβπ) β£ π β π‘}) |
7 | | simp1 997 |
. . 3
β’ ((π β LMod β§ π β π β§ π β π) β π β LMod) |
8 | | simp3 999 |
. . . 4
β’ ((π β LMod β§ π β π β§ π β π) β π β π) |
9 | | simp2 998 |
. . . 4
β’ ((π β LMod β§ π β π β§ π β π) β π β π) |
10 | 8, 9 | sstrd 3167 |
. . 3
β’ ((π β LMod β§ π β π β§ π β π) β π β π) |
11 | | lspss.v |
. . . 4
β’ π = (Baseβπ) |
12 | | eqid 2177 |
. . . 4
β’
(LSubSpβπ) =
(LSubSpβπ) |
13 | | lspss.n |
. . . 4
β’ π = (LSpanβπ) |
14 | 11, 12, 13 | lspval 13482 |
. . 3
β’ ((π β LMod β§ π β π) β (πβπ) = β© {π‘ β (LSubSpβπ) β£ π β π‘}) |
15 | 7, 10, 14 | syl2anc 411 |
. 2
β’ ((π β LMod β§ π β π β§ π β π) β (πβπ) = β© {π‘ β (LSubSpβπ) β£ π β π‘}) |
16 | 11, 12, 13 | lspval 13482 |
. . 3
β’ ((π β LMod β§ π β π) β (πβπ) = β© {π‘ β (LSubSpβπ) β£ π β π‘}) |
17 | 16 | 3adant3 1017 |
. 2
β’ ((π β LMod β§ π β π β§ π β π) β (πβπ) = β© {π‘ β (LSubSpβπ) β£ π β π‘}) |
18 | 6, 15, 17 | 3sstr4d 3202 |
1
β’ ((π β LMod β§ π β π β§ π β π) β (πβπ) β (πβπ)) |