ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  clsss GIF version

Theorem clsss 14438
Description: Subset relationship for closure. (Contributed by NM, 10-Feb-2007.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
clsss ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → ((cls‘𝐽)‘𝑇) ⊆ ((cls‘𝐽)‘𝑆))

Proof of Theorem clsss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sstr2 3191 . . . . . 6 (𝑇𝑆 → (𝑆𝑥𝑇𝑥))
21adantr 276 . . . . 5 ((𝑇𝑆𝑥 ∈ (Clsd‘𝐽)) → (𝑆𝑥𝑇𝑥))
32ss2rabdv 3265 . . . 4 (𝑇𝑆 → {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥} ⊆ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑇𝑥})
4 intss 3896 . . . 4 ({𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥} ⊆ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑇𝑥} → {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑇𝑥} ⊆ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥})
53, 4syl 14 . . 3 (𝑇𝑆 {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑇𝑥} ⊆ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥})
653ad2ant3 1022 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑇𝑥} ⊆ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥})
7 simp1 999 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → 𝐽 ∈ Top)
8 sstr2 3191 . . . . 5 (𝑇𝑆 → (𝑆𝑋𝑇𝑋))
98impcom 125 . . . 4 ((𝑆𝑋𝑇𝑆) → 𝑇𝑋)
1093adant1 1017 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → 𝑇𝑋)
11 clscld.1 . . . 4 𝑋 = 𝐽
1211clsval 14431 . . 3 ((𝐽 ∈ Top ∧ 𝑇𝑋) → ((cls‘𝐽)‘𝑇) = {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑇𝑥})
137, 10, 12syl2anc 411 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → ((cls‘𝐽)‘𝑇) = {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑇𝑥})
1411clsval 14431 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) = {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥})
15143adant3 1019 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → ((cls‘𝐽)‘𝑆) = {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥})
166, 13, 153sstr4d 3229 1 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → ((cls‘𝐽)‘𝑇) ⊆ ((cls‘𝐽)‘𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 980   = wceq 1364  wcel 2167  {crab 2479  wss 3157   cuni 3840   cint 3875  cfv 5259  Topctop 14317  Clsdccld 14412  clsccl 14414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-top 14318  df-cld 14415  df-cls 14417
This theorem is referenced by:  clsss2  14449
  Copyright terms: Public domain W3C validator