ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  clsss GIF version

Theorem clsss 14508
Description: Subset relationship for closure. (Contributed by NM, 10-Feb-2007.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
clsss ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → ((cls‘𝐽)‘𝑇) ⊆ ((cls‘𝐽)‘𝑆))

Proof of Theorem clsss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sstr2 3199 . . . . . 6 (𝑇𝑆 → (𝑆𝑥𝑇𝑥))
21adantr 276 . . . . 5 ((𝑇𝑆𝑥 ∈ (Clsd‘𝐽)) → (𝑆𝑥𝑇𝑥))
32ss2rabdv 3273 . . . 4 (𝑇𝑆 → {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥} ⊆ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑇𝑥})
4 intss 3905 . . . 4 ({𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥} ⊆ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑇𝑥} → {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑇𝑥} ⊆ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥})
53, 4syl 14 . . 3 (𝑇𝑆 {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑇𝑥} ⊆ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥})
653ad2ant3 1022 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑇𝑥} ⊆ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥})
7 simp1 999 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → 𝐽 ∈ Top)
8 sstr2 3199 . . . . 5 (𝑇𝑆 → (𝑆𝑋𝑇𝑋))
98impcom 125 . . . 4 ((𝑆𝑋𝑇𝑆) → 𝑇𝑋)
1093adant1 1017 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → 𝑇𝑋)
11 clscld.1 . . . 4 𝑋 = 𝐽
1211clsval 14501 . . 3 ((𝐽 ∈ Top ∧ 𝑇𝑋) → ((cls‘𝐽)‘𝑇) = {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑇𝑥})
137, 10, 12syl2anc 411 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → ((cls‘𝐽)‘𝑇) = {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑇𝑥})
1411clsval 14501 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) = {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥})
15143adant3 1019 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → ((cls‘𝐽)‘𝑆) = {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥})
166, 13, 153sstr4d 3237 1 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → ((cls‘𝐽)‘𝑇) ⊆ ((cls‘𝐽)‘𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 980   = wceq 1372  wcel 2175  {crab 2487  wss 3165   cuni 3849   cint 3884  cfv 5268  Topctop 14387  Clsdccld 14482  clsccl 14484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-top 14388  df-cld 14485  df-cls 14487
This theorem is referenced by:  clsss2  14519
  Copyright terms: Public domain W3C validator