| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > clsss | GIF version | ||
| Description: Subset relationship for closure. (Contributed by NM, 10-Feb-2007.) |
| Ref | Expression |
|---|---|
| clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| clsss | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → ((cls‘𝐽)‘𝑇) ⊆ ((cls‘𝐽)‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstr2 3231 | . . . . . 6 ⊢ (𝑇 ⊆ 𝑆 → (𝑆 ⊆ 𝑥 → 𝑇 ⊆ 𝑥)) | |
| 2 | 1 | adantr 276 | . . . . 5 ⊢ ((𝑇 ⊆ 𝑆 ∧ 𝑥 ∈ (Clsd‘𝐽)) → (𝑆 ⊆ 𝑥 → 𝑇 ⊆ 𝑥)) |
| 3 | 2 | ss2rabdv 3305 | . . . 4 ⊢ (𝑇 ⊆ 𝑆 → {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥} ⊆ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑇 ⊆ 𝑥}) |
| 4 | intss 3943 | . . . 4 ⊢ ({𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥} ⊆ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑇 ⊆ 𝑥} → ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑇 ⊆ 𝑥} ⊆ ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥}) | |
| 5 | 3, 4 | syl 14 | . . 3 ⊢ (𝑇 ⊆ 𝑆 → ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑇 ⊆ 𝑥} ⊆ ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥}) |
| 6 | 5 | 3ad2ant3 1044 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑇 ⊆ 𝑥} ⊆ ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥}) |
| 7 | simp1 1021 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → 𝐽 ∈ Top) | |
| 8 | sstr2 3231 | . . . . 5 ⊢ (𝑇 ⊆ 𝑆 → (𝑆 ⊆ 𝑋 → 𝑇 ⊆ 𝑋)) | |
| 9 | 8 | impcom 125 | . . . 4 ⊢ ((𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → 𝑇 ⊆ 𝑋) |
| 10 | 9 | 3adant1 1039 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → 𝑇 ⊆ 𝑋) |
| 11 | clscld.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
| 12 | 11 | clsval 14779 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑇 ⊆ 𝑋) → ((cls‘𝐽)‘𝑇) = ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑇 ⊆ 𝑥}) |
| 13 | 7, 10, 12 | syl2anc 411 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → ((cls‘𝐽)‘𝑇) = ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑇 ⊆ 𝑥}) |
| 14 | 11 | clsval 14779 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) = ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥}) |
| 15 | 14 | 3adant3 1041 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → ((cls‘𝐽)‘𝑆) = ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥}) |
| 16 | 6, 13, 15 | 3sstr4d 3269 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → ((cls‘𝐽)‘𝑇) ⊆ ((cls‘𝐽)‘𝑆)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 {crab 2512 ⊆ wss 3197 ∪ cuni 3887 ∩ cint 3922 ‘cfv 5317 Topctop 14665 Clsdccld 14760 clsccl 14762 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-top 14666 df-cld 14763 df-cls 14765 |
| This theorem is referenced by: clsss2 14797 |
| Copyright terms: Public domain | W3C validator |