ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ismkvmap GIF version

Theorem ismkvmap 7289
Description: The predicate of being Markov stated in terms of set exponentiation. (Contributed by Jim Kingdon, 18-Mar-2023.)
Assertion
Ref Expression
ismkvmap (𝐴𝑉 → (𝐴 ∈ Markov ↔ ∀𝑓 ∈ (2o𝑚 𝐴)(¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅)))
Distinct variable groups:   𝐴,𝑓,𝑥   𝑓,𝑉
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem ismkvmap
StepHypRef Expression
1 ismkv 7288 . . 3 (𝐴𝑉 → (𝐴 ∈ Markov ↔ ∀𝑓(𝑓:𝐴⟶2o → (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅))))
2 2onn 6637 . . . . . 6 2o ∈ ω
3 elmapg 6778 . . . . . 6 ((2o ∈ ω ∧ 𝐴𝑉) → (𝑓 ∈ (2o𝑚 𝐴) ↔ 𝑓:𝐴⟶2o))
42, 3mpan 424 . . . . 5 (𝐴𝑉 → (𝑓 ∈ (2o𝑚 𝐴) ↔ 𝑓:𝐴⟶2o))
54imbi1d 231 . . . 4 (𝐴𝑉 → ((𝑓 ∈ (2o𝑚 𝐴) → (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅)) ↔ (𝑓:𝐴⟶2o → (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅))))
65albidv 1850 . . 3 (𝐴𝑉 → (∀𝑓(𝑓 ∈ (2o𝑚 𝐴) → (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅)) ↔ ∀𝑓(𝑓:𝐴⟶2o → (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅))))
71, 6bitr4d 191 . 2 (𝐴𝑉 → (𝐴 ∈ Markov ↔ ∀𝑓(𝑓 ∈ (2o𝑚 𝐴) → (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅))))
8 df-ral 2493 . 2 (∀𝑓 ∈ (2o𝑚 𝐴)(¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅) ↔ ∀𝑓(𝑓 ∈ (2o𝑚 𝐴) → (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅)))
97, 8bitr4di 198 1 (𝐴𝑉 → (𝐴 ∈ Markov ↔ ∀𝑓 ∈ (2o𝑚 𝐴)(¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105  wal 1373   = wceq 1375  wcel 2180  wral 2488  wrex 2489  c0 3471  ωcom 4659  wf 5290  cfv 5294  (class class class)co 5974  1oc1o 6525  2oc2o 6526  𝑚 cmap 6765  Markovcmarkov 7286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-v 2781  df-sbc 3009  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-br 4063  df-opab 4125  df-id 4361  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-fv 5302  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1o 6532  df-2o 6533  df-map 6767  df-markov 7287
This theorem is referenced by:  ismkvnex  7290  fodjumkvlemres  7294  enmkvlem  7296  ismkvnnlem  16331
  Copyright terms: Public domain W3C validator