ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ismkvmap GIF version

Theorem ismkvmap 7118
Description: The predicate of being Markov stated in terms of set exponentiation. (Contributed by Jim Kingdon, 18-Mar-2023.)
Assertion
Ref Expression
ismkvmap (𝐴𝑉 → (𝐴 ∈ Markov ↔ ∀𝑓 ∈ (2o𝑚 𝐴)(¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅)))
Distinct variable groups:   𝐴,𝑓,𝑥   𝑓,𝑉
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem ismkvmap
StepHypRef Expression
1 ismkv 7117 . . 3 (𝐴𝑉 → (𝐴 ∈ Markov ↔ ∀𝑓(𝑓:𝐴⟶2o → (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅))))
2 2onn 6489 . . . . . 6 2o ∈ ω
3 elmapg 6627 . . . . . 6 ((2o ∈ ω ∧ 𝐴𝑉) → (𝑓 ∈ (2o𝑚 𝐴) ↔ 𝑓:𝐴⟶2o))
42, 3mpan 421 . . . . 5 (𝐴𝑉 → (𝑓 ∈ (2o𝑚 𝐴) ↔ 𝑓:𝐴⟶2o))
54imbi1d 230 . . . 4 (𝐴𝑉 → ((𝑓 ∈ (2o𝑚 𝐴) → (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅)) ↔ (𝑓:𝐴⟶2o → (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅))))
65albidv 1812 . . 3 (𝐴𝑉 → (∀𝑓(𝑓 ∈ (2o𝑚 𝐴) → (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅)) ↔ ∀𝑓(𝑓:𝐴⟶2o → (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅))))
71, 6bitr4d 190 . 2 (𝐴𝑉 → (𝐴 ∈ Markov ↔ ∀𝑓(𝑓 ∈ (2o𝑚 𝐴) → (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅))))
8 df-ral 2449 . 2 (∀𝑓 ∈ (2o𝑚 𝐴)(¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅) ↔ ∀𝑓(𝑓 ∈ (2o𝑚 𝐴) → (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅)))
97, 8bitr4di 197 1 (𝐴𝑉 → (𝐴 ∈ Markov ↔ ∀𝑓 ∈ (2o𝑚 𝐴)(¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 104  wal 1341   = wceq 1343  wcel 2136  wral 2444  wrex 2445  c0 3409  ωcom 4567  wf 5184  cfv 5188  (class class class)co 5842  1oc1o 6377  2oc2o 6378  𝑚 cmap 6614  Markovcmarkov 7115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-id 4271  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1o 6384  df-2o 6385  df-map 6616  df-markov 7116
This theorem is referenced by:  ismkvnex  7119  fodjumkvlemres  7123  enmkvlem  7125  ismkvnnlem  13931
  Copyright terms: Public domain W3C validator