| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ismkvmap | GIF version | ||
| Description: The predicate of being Markov stated in terms of set exponentiation. (Contributed by Jim Kingdon, 18-Mar-2023.) |
| Ref | Expression |
|---|---|
| ismkvmap | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Markov ↔ ∀𝑓 ∈ (2o ↑𝑚 𝐴)(¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismkv 7288 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Markov ↔ ∀𝑓(𝑓:𝐴⟶2o → (¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅)))) | |
| 2 | 2onn 6637 | . . . . . 6 ⊢ 2o ∈ ω | |
| 3 | elmapg 6778 | . . . . . 6 ⊢ ((2o ∈ ω ∧ 𝐴 ∈ 𝑉) → (𝑓 ∈ (2o ↑𝑚 𝐴) ↔ 𝑓:𝐴⟶2o)) | |
| 4 | 2, 3 | mpan 424 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝑓 ∈ (2o ↑𝑚 𝐴) ↔ 𝑓:𝐴⟶2o)) |
| 5 | 4 | imbi1d 231 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ((𝑓 ∈ (2o ↑𝑚 𝐴) → (¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅)) ↔ (𝑓:𝐴⟶2o → (¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅)))) |
| 6 | 5 | albidv 1850 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (∀𝑓(𝑓 ∈ (2o ↑𝑚 𝐴) → (¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅)) ↔ ∀𝑓(𝑓:𝐴⟶2o → (¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅)))) |
| 7 | 1, 6 | bitr4d 191 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Markov ↔ ∀𝑓(𝑓 ∈ (2o ↑𝑚 𝐴) → (¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅)))) |
| 8 | df-ral 2493 | . 2 ⊢ (∀𝑓 ∈ (2o ↑𝑚 𝐴)(¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅) ↔ ∀𝑓(𝑓 ∈ (2o ↑𝑚 𝐴) → (¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅))) | |
| 9 | 7, 8 | bitr4di 198 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Markov ↔ ∀𝑓 ∈ (2o ↑𝑚 𝐴)(¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∀wal 1373 = wceq 1375 ∈ wcel 2180 ∀wral 2488 ∃wrex 2489 ∅c0 3471 ωcom 4659 ⟶wf 5290 ‘cfv 5294 (class class class)co 5974 1oc1o 6525 2oc2o 6526 ↑𝑚 cmap 6765 Markovcmarkov 7286 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-v 2781 df-sbc 3009 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-br 4063 df-opab 4125 df-id 4361 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-fv 5302 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1o 6532 df-2o 6533 df-map 6767 df-markov 7287 |
| This theorem is referenced by: ismkvnex 7290 fodjumkvlemres 7294 enmkvlem 7296 ismkvnnlem 16331 |
| Copyright terms: Public domain | W3C validator |