ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  div4p1lem1div2 GIF version

Theorem div4p1lem1div2 9264
Description: An integer greater than 5, divided by 4 and increased by 1, is less than or equal to the half of the integer minus 1. (Contributed by AV, 8-Jul-2021.)
Assertion
Ref Expression
div4p1lem1div2 ((𝑁 ∈ ℝ ∧ 6 ≤ 𝑁) → ((𝑁 / 4) + 1) ≤ ((𝑁 − 1) / 2))

Proof of Theorem div4p1lem1div2
StepHypRef Expression
1 6re 9090 . . . . . . 7 6 ∈ ℝ
21a1i 9 . . . . . 6 (𝑁 ∈ ℝ → 6 ∈ ℝ)
3 id 19 . . . . . 6 (𝑁 ∈ ℝ → 𝑁 ∈ ℝ)
42, 3, 3leadd2d 8586 . . . . 5 (𝑁 ∈ ℝ → (6 ≤ 𝑁 ↔ (𝑁 + 6) ≤ (𝑁 + 𝑁)))
54biimpa 296 . . . 4 ((𝑁 ∈ ℝ ∧ 6 ≤ 𝑁) → (𝑁 + 6) ≤ (𝑁 + 𝑁))
6 recn 8031 . . . . . 6 (𝑁 ∈ ℝ → 𝑁 ∈ ℂ)
76times2d 9254 . . . . 5 (𝑁 ∈ ℝ → (𝑁 · 2) = (𝑁 + 𝑁))
87adantr 276 . . . 4 ((𝑁 ∈ ℝ ∧ 6 ≤ 𝑁) → (𝑁 · 2) = (𝑁 + 𝑁))
95, 8breqtrrd 4062 . . 3 ((𝑁 ∈ ℝ ∧ 6 ≤ 𝑁) → (𝑁 + 6) ≤ (𝑁 · 2))
10 4cn 9087 . . . . . . . 8 4 ∈ ℂ
1110a1i 9 . . . . . . 7 (𝑁 ∈ ℝ → 4 ∈ ℂ)
12 2cn 9080 . . . . . . . 8 2 ∈ ℂ
1312a1i 9 . . . . . . 7 (𝑁 ∈ ℝ → 2 ∈ ℂ)
146, 11, 13addassd 8068 . . . . . 6 (𝑁 ∈ ℝ → ((𝑁 + 4) + 2) = (𝑁 + (4 + 2)))
15 4p2e6 9153 . . . . . . 7 (4 + 2) = 6
1615oveq2i 5936 . . . . . 6 (𝑁 + (4 + 2)) = (𝑁 + 6)
1714, 16eqtrdi 2245 . . . . 5 (𝑁 ∈ ℝ → ((𝑁 + 4) + 2) = (𝑁 + 6))
1817breq1d 4044 . . . 4 (𝑁 ∈ ℝ → (((𝑁 + 4) + 2) ≤ (𝑁 · 2) ↔ (𝑁 + 6) ≤ (𝑁 · 2)))
1918adantr 276 . . 3 ((𝑁 ∈ ℝ ∧ 6 ≤ 𝑁) → (((𝑁 + 4) + 2) ≤ (𝑁 · 2) ↔ (𝑁 + 6) ≤ (𝑁 · 2)))
209, 19mpbird 167 . 2 ((𝑁 ∈ ℝ ∧ 6 ≤ 𝑁) → ((𝑁 + 4) + 2) ≤ (𝑁 · 2))
21 4re 9086 . . . . . . . 8 4 ∈ ℝ
2221a1i 9 . . . . . . 7 (𝑁 ∈ ℝ → 4 ∈ ℝ)
23 4ap0 9108 . . . . . . . 8 4 # 0
2423a1i 9 . . . . . . 7 (𝑁 ∈ ℝ → 4 # 0)
253, 22, 24redivclapd 8881 . . . . . 6 (𝑁 ∈ ℝ → (𝑁 / 4) ∈ ℝ)
26 peano2re 8181 . . . . . 6 ((𝑁 / 4) ∈ ℝ → ((𝑁 / 4) + 1) ∈ ℝ)
2725, 26syl 14 . . . . 5 (𝑁 ∈ ℝ → ((𝑁 / 4) + 1) ∈ ℝ)
28 peano2rem 8312 . . . . . 6 (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ)
2928rehalfcld 9257 . . . . 5 (𝑁 ∈ ℝ → ((𝑁 − 1) / 2) ∈ ℝ)
30 4pos 9106 . . . . . . 7 0 < 4
3121, 30pm3.2i 272 . . . . . 6 (4 ∈ ℝ ∧ 0 < 4)
3231a1i 9 . . . . 5 (𝑁 ∈ ℝ → (4 ∈ ℝ ∧ 0 < 4))
33 lemul1 8639 . . . . 5 ((((𝑁 / 4) + 1) ∈ ℝ ∧ ((𝑁 − 1) / 2) ∈ ℝ ∧ (4 ∈ ℝ ∧ 0 < 4)) → (((𝑁 / 4) + 1) ≤ ((𝑁 − 1) / 2) ↔ (((𝑁 / 4) + 1) · 4) ≤ (((𝑁 − 1) / 2) · 4)))
3427, 29, 32, 33syl3anc 1249 . . . 4 (𝑁 ∈ ℝ → (((𝑁 / 4) + 1) ≤ ((𝑁 − 1) / 2) ↔ (((𝑁 / 4) + 1) · 4) ≤ (((𝑁 − 1) / 2) · 4)))
3525recnd 8074 . . . . . 6 (𝑁 ∈ ℝ → (𝑁 / 4) ∈ ℂ)
36 1cnd 8061 . . . . . 6 (𝑁 ∈ ℝ → 1 ∈ ℂ)
376, 11, 24divcanap1d 8837 . . . . . . 7 (𝑁 ∈ ℝ → ((𝑁 / 4) · 4) = 𝑁)
3810mullidi 8048 . . . . . . . 8 (1 · 4) = 4
3938a1i 9 . . . . . . 7 (𝑁 ∈ ℝ → (1 · 4) = 4)
4037, 39oveq12d 5943 . . . . . 6 (𝑁 ∈ ℝ → (((𝑁 / 4) · 4) + (1 · 4)) = (𝑁 + 4))
4135, 11, 36, 40joinlmuladdmuld 8073 . . . . 5 (𝑁 ∈ ℝ → (((𝑁 / 4) + 1) · 4) = (𝑁 + 4))
42 2t2e4 9164 . . . . . . . . 9 (2 · 2) = 4
4342eqcomi 2200 . . . . . . . 8 4 = (2 · 2)
4443a1i 9 . . . . . . 7 (𝑁 ∈ ℝ → 4 = (2 · 2))
4544oveq2d 5941 . . . . . 6 (𝑁 ∈ ℝ → (((𝑁 − 1) / 2) · 4) = (((𝑁 − 1) / 2) · (2 · 2)))
4629recnd 8074 . . . . . . 7 (𝑁 ∈ ℝ → ((𝑁 − 1) / 2) ∈ ℂ)
47 mulass 8029 . . . . . . . 8 ((((𝑁 − 1) / 2) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ∈ ℂ) → ((((𝑁 − 1) / 2) · 2) · 2) = (((𝑁 − 1) / 2) · (2 · 2)))
4847eqcomd 2202 . . . . . . 7 ((((𝑁 − 1) / 2) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ∈ ℂ) → (((𝑁 − 1) / 2) · (2 · 2)) = ((((𝑁 − 1) / 2) · 2) · 2))
4946, 13, 13, 48syl3anc 1249 . . . . . 6 (𝑁 ∈ ℝ → (((𝑁 − 1) / 2) · (2 · 2)) = ((((𝑁 − 1) / 2) · 2) · 2))
5028recnd 8074 . . . . . . . . 9 (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℂ)
51 2ap0 9102 . . . . . . . . . 10 2 # 0
5251a1i 9 . . . . . . . . 9 (𝑁 ∈ ℝ → 2 # 0)
5350, 13, 52divcanap1d 8837 . . . . . . . 8 (𝑁 ∈ ℝ → (((𝑁 − 1) / 2) · 2) = (𝑁 − 1))
5453oveq1d 5940 . . . . . . 7 (𝑁 ∈ ℝ → ((((𝑁 − 1) / 2) · 2) · 2) = ((𝑁 − 1) · 2))
556, 36, 13subdird 8460 . . . . . . 7 (𝑁 ∈ ℝ → ((𝑁 − 1) · 2) = ((𝑁 · 2) − (1 · 2)))
5612mullidi 8048 . . . . . . . . 9 (1 · 2) = 2
5756a1i 9 . . . . . . . 8 (𝑁 ∈ ℝ → (1 · 2) = 2)
5857oveq2d 5941 . . . . . . 7 (𝑁 ∈ ℝ → ((𝑁 · 2) − (1 · 2)) = ((𝑁 · 2) − 2))
5954, 55, 583eqtrd 2233 . . . . . 6 (𝑁 ∈ ℝ → ((((𝑁 − 1) / 2) · 2) · 2) = ((𝑁 · 2) − 2))
6045, 49, 593eqtrd 2233 . . . . 5 (𝑁 ∈ ℝ → (((𝑁 − 1) / 2) · 4) = ((𝑁 · 2) − 2))
6141, 60breq12d 4047 . . . 4 (𝑁 ∈ ℝ → ((((𝑁 / 4) + 1) · 4) ≤ (((𝑁 − 1) / 2) · 4) ↔ (𝑁 + 4) ≤ ((𝑁 · 2) − 2)))
623, 22readdcld 8075 . . . . 5 (𝑁 ∈ ℝ → (𝑁 + 4) ∈ ℝ)
63 2re 9079 . . . . . 6 2 ∈ ℝ
6463a1i 9 . . . . 5 (𝑁 ∈ ℝ → 2 ∈ ℝ)
653, 64remulcld 8076 . . . . 5 (𝑁 ∈ ℝ → (𝑁 · 2) ∈ ℝ)
66 leaddsub 8484 . . . . . 6 (((𝑁 + 4) ∈ ℝ ∧ 2 ∈ ℝ ∧ (𝑁 · 2) ∈ ℝ) → (((𝑁 + 4) + 2) ≤ (𝑁 · 2) ↔ (𝑁 + 4) ≤ ((𝑁 · 2) − 2)))
6766bicomd 141 . . . . 5 (((𝑁 + 4) ∈ ℝ ∧ 2 ∈ ℝ ∧ (𝑁 · 2) ∈ ℝ) → ((𝑁 + 4) ≤ ((𝑁 · 2) − 2) ↔ ((𝑁 + 4) + 2) ≤ (𝑁 · 2)))
6862, 64, 65, 67syl3anc 1249 . . . 4 (𝑁 ∈ ℝ → ((𝑁 + 4) ≤ ((𝑁 · 2) − 2) ↔ ((𝑁 + 4) + 2) ≤ (𝑁 · 2)))
6934, 61, 683bitrd 214 . . 3 (𝑁 ∈ ℝ → (((𝑁 / 4) + 1) ≤ ((𝑁 − 1) / 2) ↔ ((𝑁 + 4) + 2) ≤ (𝑁 · 2)))
7069adantr 276 . 2 ((𝑁 ∈ ℝ ∧ 6 ≤ 𝑁) → (((𝑁 / 4) + 1) ≤ ((𝑁 − 1) / 2) ↔ ((𝑁 + 4) + 2) ≤ (𝑁 · 2)))
7120, 70mpbird 167 1 ((𝑁 ∈ ℝ ∧ 6 ≤ 𝑁) → ((𝑁 / 4) + 1) ≤ ((𝑁 − 1) / 2))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2167   class class class wbr 4034  (class class class)co 5925  cc 7896  cr 7897  0cc0 7898  1c1 7899   + caddc 7901   · cmul 7903   < clt 8080  cle 8081  cmin 8216   # cap 8627   / cdiv 8718  2c2 9060  4c4 9062  6c6 9064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-2 9068  df-3 9069  df-4 9070  df-5 9071  df-6 9072
This theorem is referenced by:  fldiv4p1lem1div2  10414
  Copyright terms: Public domain W3C validator