ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  div4p1lem1div2 GIF version

Theorem div4p1lem1div2 9131
Description: An integer greater than 5, divided by 4 and increased by 1, is less than or equal to the half of the integer minus 1. (Contributed by AV, 8-Jul-2021.)
Assertion
Ref Expression
div4p1lem1div2 ((𝑁 ∈ ℝ ∧ 6 ≤ 𝑁) → ((𝑁 / 4) + 1) ≤ ((𝑁 − 1) / 2))

Proof of Theorem div4p1lem1div2
StepHypRef Expression
1 6re 8959 . . . . . . 7 6 ∈ ℝ
21a1i 9 . . . . . 6 (𝑁 ∈ ℝ → 6 ∈ ℝ)
3 id 19 . . . . . 6 (𝑁 ∈ ℝ → 𝑁 ∈ ℝ)
42, 3, 3leadd2d 8459 . . . . 5 (𝑁 ∈ ℝ → (6 ≤ 𝑁 ↔ (𝑁 + 6) ≤ (𝑁 + 𝑁)))
54biimpa 294 . . . 4 ((𝑁 ∈ ℝ ∧ 6 ≤ 𝑁) → (𝑁 + 6) ≤ (𝑁 + 𝑁))
6 recn 7907 . . . . . 6 (𝑁 ∈ ℝ → 𝑁 ∈ ℂ)
76times2d 9121 . . . . 5 (𝑁 ∈ ℝ → (𝑁 · 2) = (𝑁 + 𝑁))
87adantr 274 . . . 4 ((𝑁 ∈ ℝ ∧ 6 ≤ 𝑁) → (𝑁 · 2) = (𝑁 + 𝑁))
95, 8breqtrrd 4017 . . 3 ((𝑁 ∈ ℝ ∧ 6 ≤ 𝑁) → (𝑁 + 6) ≤ (𝑁 · 2))
10 4cn 8956 . . . . . . . 8 4 ∈ ℂ
1110a1i 9 . . . . . . 7 (𝑁 ∈ ℝ → 4 ∈ ℂ)
12 2cn 8949 . . . . . . . 8 2 ∈ ℂ
1312a1i 9 . . . . . . 7 (𝑁 ∈ ℝ → 2 ∈ ℂ)
146, 11, 13addassd 7942 . . . . . 6 (𝑁 ∈ ℝ → ((𝑁 + 4) + 2) = (𝑁 + (4 + 2)))
15 4p2e6 9021 . . . . . . 7 (4 + 2) = 6
1615oveq2i 5864 . . . . . 6 (𝑁 + (4 + 2)) = (𝑁 + 6)
1714, 16eqtrdi 2219 . . . . 5 (𝑁 ∈ ℝ → ((𝑁 + 4) + 2) = (𝑁 + 6))
1817breq1d 3999 . . . 4 (𝑁 ∈ ℝ → (((𝑁 + 4) + 2) ≤ (𝑁 · 2) ↔ (𝑁 + 6) ≤ (𝑁 · 2)))
1918adantr 274 . . 3 ((𝑁 ∈ ℝ ∧ 6 ≤ 𝑁) → (((𝑁 + 4) + 2) ≤ (𝑁 · 2) ↔ (𝑁 + 6) ≤ (𝑁 · 2)))
209, 19mpbird 166 . 2 ((𝑁 ∈ ℝ ∧ 6 ≤ 𝑁) → ((𝑁 + 4) + 2) ≤ (𝑁 · 2))
21 4re 8955 . . . . . . . 8 4 ∈ ℝ
2221a1i 9 . . . . . . 7 (𝑁 ∈ ℝ → 4 ∈ ℝ)
23 4ap0 8977 . . . . . . . 8 4 # 0
2423a1i 9 . . . . . . 7 (𝑁 ∈ ℝ → 4 # 0)
253, 22, 24redivclapd 8752 . . . . . 6 (𝑁 ∈ ℝ → (𝑁 / 4) ∈ ℝ)
26 peano2re 8055 . . . . . 6 ((𝑁 / 4) ∈ ℝ → ((𝑁 / 4) + 1) ∈ ℝ)
2725, 26syl 14 . . . . 5 (𝑁 ∈ ℝ → ((𝑁 / 4) + 1) ∈ ℝ)
28 peano2rem 8186 . . . . . 6 (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ)
2928rehalfcld 9124 . . . . 5 (𝑁 ∈ ℝ → ((𝑁 − 1) / 2) ∈ ℝ)
30 4pos 8975 . . . . . . 7 0 < 4
3121, 30pm3.2i 270 . . . . . 6 (4 ∈ ℝ ∧ 0 < 4)
3231a1i 9 . . . . 5 (𝑁 ∈ ℝ → (4 ∈ ℝ ∧ 0 < 4))
33 lemul1 8512 . . . . 5 ((((𝑁 / 4) + 1) ∈ ℝ ∧ ((𝑁 − 1) / 2) ∈ ℝ ∧ (4 ∈ ℝ ∧ 0 < 4)) → (((𝑁 / 4) + 1) ≤ ((𝑁 − 1) / 2) ↔ (((𝑁 / 4) + 1) · 4) ≤ (((𝑁 − 1) / 2) · 4)))
3427, 29, 32, 33syl3anc 1233 . . . 4 (𝑁 ∈ ℝ → (((𝑁 / 4) + 1) ≤ ((𝑁 − 1) / 2) ↔ (((𝑁 / 4) + 1) · 4) ≤ (((𝑁 − 1) / 2) · 4)))
3525recnd 7948 . . . . . 6 (𝑁 ∈ ℝ → (𝑁 / 4) ∈ ℂ)
36 1cnd 7936 . . . . . 6 (𝑁 ∈ ℝ → 1 ∈ ℂ)
376, 11, 24divcanap1d 8708 . . . . . . 7 (𝑁 ∈ ℝ → ((𝑁 / 4) · 4) = 𝑁)
3810mulid2i 7923 . . . . . . . 8 (1 · 4) = 4
3938a1i 9 . . . . . . 7 (𝑁 ∈ ℝ → (1 · 4) = 4)
4037, 39oveq12d 5871 . . . . . 6 (𝑁 ∈ ℝ → (((𝑁 / 4) · 4) + (1 · 4)) = (𝑁 + 4))
4135, 11, 36, 40joinlmuladdmuld 7947 . . . . 5 (𝑁 ∈ ℝ → (((𝑁 / 4) + 1) · 4) = (𝑁 + 4))
42 2t2e4 9032 . . . . . . . . 9 (2 · 2) = 4
4342eqcomi 2174 . . . . . . . 8 4 = (2 · 2)
4443a1i 9 . . . . . . 7 (𝑁 ∈ ℝ → 4 = (2 · 2))
4544oveq2d 5869 . . . . . 6 (𝑁 ∈ ℝ → (((𝑁 − 1) / 2) · 4) = (((𝑁 − 1) / 2) · (2 · 2)))
4629recnd 7948 . . . . . . 7 (𝑁 ∈ ℝ → ((𝑁 − 1) / 2) ∈ ℂ)
47 mulass 7905 . . . . . . . 8 ((((𝑁 − 1) / 2) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ∈ ℂ) → ((((𝑁 − 1) / 2) · 2) · 2) = (((𝑁 − 1) / 2) · (2 · 2)))
4847eqcomd 2176 . . . . . . 7 ((((𝑁 − 1) / 2) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ∈ ℂ) → (((𝑁 − 1) / 2) · (2 · 2)) = ((((𝑁 − 1) / 2) · 2) · 2))
4946, 13, 13, 48syl3anc 1233 . . . . . 6 (𝑁 ∈ ℝ → (((𝑁 − 1) / 2) · (2 · 2)) = ((((𝑁 − 1) / 2) · 2) · 2))
5028recnd 7948 . . . . . . . . 9 (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℂ)
51 2ap0 8971 . . . . . . . . . 10 2 # 0
5251a1i 9 . . . . . . . . 9 (𝑁 ∈ ℝ → 2 # 0)
5350, 13, 52divcanap1d 8708 . . . . . . . 8 (𝑁 ∈ ℝ → (((𝑁 − 1) / 2) · 2) = (𝑁 − 1))
5453oveq1d 5868 . . . . . . 7 (𝑁 ∈ ℝ → ((((𝑁 − 1) / 2) · 2) · 2) = ((𝑁 − 1) · 2))
556, 36, 13subdird 8334 . . . . . . 7 (𝑁 ∈ ℝ → ((𝑁 − 1) · 2) = ((𝑁 · 2) − (1 · 2)))
5612mulid2i 7923 . . . . . . . . 9 (1 · 2) = 2
5756a1i 9 . . . . . . . 8 (𝑁 ∈ ℝ → (1 · 2) = 2)
5857oveq2d 5869 . . . . . . 7 (𝑁 ∈ ℝ → ((𝑁 · 2) − (1 · 2)) = ((𝑁 · 2) − 2))
5954, 55, 583eqtrd 2207 . . . . . 6 (𝑁 ∈ ℝ → ((((𝑁 − 1) / 2) · 2) · 2) = ((𝑁 · 2) − 2))
6045, 49, 593eqtrd 2207 . . . . 5 (𝑁 ∈ ℝ → (((𝑁 − 1) / 2) · 4) = ((𝑁 · 2) − 2))
6141, 60breq12d 4002 . . . 4 (𝑁 ∈ ℝ → ((((𝑁 / 4) + 1) · 4) ≤ (((𝑁 − 1) / 2) · 4) ↔ (𝑁 + 4) ≤ ((𝑁 · 2) − 2)))
623, 22readdcld 7949 . . . . 5 (𝑁 ∈ ℝ → (𝑁 + 4) ∈ ℝ)
63 2re 8948 . . . . . 6 2 ∈ ℝ
6463a1i 9 . . . . 5 (𝑁 ∈ ℝ → 2 ∈ ℝ)
653, 64remulcld 7950 . . . . 5 (𝑁 ∈ ℝ → (𝑁 · 2) ∈ ℝ)
66 leaddsub 8357 . . . . . 6 (((𝑁 + 4) ∈ ℝ ∧ 2 ∈ ℝ ∧ (𝑁 · 2) ∈ ℝ) → (((𝑁 + 4) + 2) ≤ (𝑁 · 2) ↔ (𝑁 + 4) ≤ ((𝑁 · 2) − 2)))
6766bicomd 140 . . . . 5 (((𝑁 + 4) ∈ ℝ ∧ 2 ∈ ℝ ∧ (𝑁 · 2) ∈ ℝ) → ((𝑁 + 4) ≤ ((𝑁 · 2) − 2) ↔ ((𝑁 + 4) + 2) ≤ (𝑁 · 2)))
6862, 64, 65, 67syl3anc 1233 . . . 4 (𝑁 ∈ ℝ → ((𝑁 + 4) ≤ ((𝑁 · 2) − 2) ↔ ((𝑁 + 4) + 2) ≤ (𝑁 · 2)))
6934, 61, 683bitrd 213 . . 3 (𝑁 ∈ ℝ → (((𝑁 / 4) + 1) ≤ ((𝑁 − 1) / 2) ↔ ((𝑁 + 4) + 2) ≤ (𝑁 · 2)))
7069adantr 274 . 2 ((𝑁 ∈ ℝ ∧ 6 ≤ 𝑁) → (((𝑁 / 4) + 1) ≤ ((𝑁 − 1) / 2) ↔ ((𝑁 + 4) + 2) ≤ (𝑁 · 2)))
7120, 70mpbird 166 1 ((𝑁 ∈ ℝ ∧ 6 ≤ 𝑁) → ((𝑁 / 4) + 1) ≤ ((𝑁 − 1) / 2))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 973   = wceq 1348  wcel 2141   class class class wbr 3989  (class class class)co 5853  cc 7772  cr 7773  0cc0 7774  1c1 7775   + caddc 7777   · cmul 7779   < clt 7954  cle 7955  cmin 8090   # cap 8500   / cdiv 8589  2c2 8929  4c4 8931  6c6 8933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-po 4281  df-iso 4282  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-2 8937  df-3 8938  df-4 8939  df-5 8940  df-6 8941
This theorem is referenced by:  fldiv4p1lem1div2  10261
  Copyright terms: Public domain W3C validator