| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > adddird | GIF version | ||
| Description: Distributive law (right-distributivity). (Contributed by Mario Carneiro, 27-May-2016.) | 
| Ref | Expression | 
|---|---|
| addcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) | 
| addcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) | 
| addassd.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) | 
| Ref | Expression | 
|---|---|
| adddird | ⊢ (𝜑 → ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | addcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | addcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | addassd.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 4 | adddir 8017 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶))) | |
| 5 | 1, 2, 3, 4 | syl3anc 1249 | 1 ⊢ (𝜑 → ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶))) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 (class class class)co 5922 ℂcc 7877 + caddc 7882 · cmul 7884 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-addcl 7975 ax-mulcom 7980 ax-distr 7983 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 | 
| This theorem is referenced by: adddirp1d 8053 joinlmuladdmuld 8054 1p1times 8160 recextlem1 8678 divdirap 8724 subsq 10738 subsq2 10739 binom2 10743 binom3 10749 remullem 11036 resqrexlemover 11175 resqrexlemcalc1 11179 bdtrilem 11404 binomlem 11648 mul4sqlem 12562 dvexp 14947 plyaddlem1 14983 rpcxpadd 15141 binom4 15215 lgsquad2lem1 15322 2sqlem4 15359 | 
| Copyright terms: Public domain | W3C validator |