Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > adddirp1d | GIF version |
Description: Distributive law, plus 1 version. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
adddirp1d.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
adddirp1d.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
adddirp1d | ⊢ (𝜑 → ((𝐴 + 1) · 𝐵) = ((𝐴 · 𝐵) + 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | adddirp1d.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | 1cnd 7911 | . . 3 ⊢ (𝜑 → 1 ∈ ℂ) | |
3 | adddirp1d.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
4 | 1, 2, 3 | adddird 7920 | . 2 ⊢ (𝜑 → ((𝐴 + 1) · 𝐵) = ((𝐴 · 𝐵) + (1 · 𝐵))) |
5 | 3 | mulid2d 7913 | . . 3 ⊢ (𝜑 → (1 · 𝐵) = 𝐵) |
6 | 5 | oveq2d 5857 | . 2 ⊢ (𝜑 → ((𝐴 · 𝐵) + (1 · 𝐵)) = ((𝐴 · 𝐵) + 𝐵)) |
7 | 4, 6 | eqtrd 2198 | 1 ⊢ (𝜑 → ((𝐴 + 1) · 𝐵) = ((𝐴 · 𝐵) + 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∈ wcel 2136 (class class class)co 5841 ℂcc 7747 1c1 7750 + caddc 7752 · cmul 7754 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-resscn 7841 ax-1cn 7842 ax-icn 7844 ax-addcl 7845 ax-mulcl 7847 ax-mulcom 7850 ax-mulass 7852 ax-distr 7853 ax-1rid 7856 ax-cnre 7860 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ral 2448 df-rex 2449 df-v 2727 df-un 3119 df-in 3121 df-ss 3128 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-br 3982 df-iota 5152 df-fv 5195 df-ov 5844 |
This theorem is referenced by: modqvalp1 10274 hashxp 10735 fsumconst 11391 divalglemnqt 11853 pcexp 12237 |
Copyright terms: Public domain | W3C validator |