| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > adddirp1d | GIF version | ||
| Description: Distributive law, plus 1 version. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| adddirp1d.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| adddirp1d.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| Ref | Expression |
|---|---|
| adddirp1d | ⊢ (𝜑 → ((𝐴 + 1) · 𝐵) = ((𝐴 · 𝐵) + 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | adddirp1d.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | 1cnd 8101 | . . 3 ⊢ (𝜑 → 1 ∈ ℂ) | |
| 3 | adddirp1d.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 4 | 1, 2, 3 | adddird 8111 | . 2 ⊢ (𝜑 → ((𝐴 + 1) · 𝐵) = ((𝐴 · 𝐵) + (1 · 𝐵))) |
| 5 | 3 | mulid2d 8104 | . . 3 ⊢ (𝜑 → (1 · 𝐵) = 𝐵) |
| 6 | 5 | oveq2d 5970 | . 2 ⊢ (𝜑 → ((𝐴 · 𝐵) + (1 · 𝐵)) = ((𝐴 · 𝐵) + 𝐵)) |
| 7 | 4, 6 | eqtrd 2239 | 1 ⊢ (𝜑 → ((𝐴 + 1) · 𝐵) = ((𝐴 · 𝐵) + 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 (class class class)co 5954 ℂcc 7936 1c1 7939 + caddc 7941 · cmul 7943 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-resscn 8030 ax-1cn 8031 ax-icn 8033 ax-addcl 8034 ax-mulcl 8036 ax-mulcom 8039 ax-mulass 8041 ax-distr 8042 ax-1rid 8045 ax-cnre 8049 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3172 df-in 3174 df-ss 3181 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-br 4049 df-iota 5238 df-fv 5285 df-ov 5957 |
| This theorem is referenced by: modqvalp1 10501 hashxp 10984 fsumconst 11815 divalglemnqt 12281 pcexp 12682 mulgnnass 13543 cnfldmulg 14388 2lgsoddprmlem3d 15637 |
| Copyright terms: Public domain | W3C validator |