Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0le1 | GIF version |
Description: 0 is less than or equal to 1. (Contributed by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
0le1 | ⊢ 0 ≤ 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 7907 | . 2 ⊢ 0 ∈ ℝ | |
2 | 1re 7906 | . 2 ⊢ 1 ∈ ℝ | |
3 | 0lt1 8033 | . 2 ⊢ 0 < 1 | |
4 | 1, 2, 3 | ltleii 8009 | 1 ⊢ 0 ≤ 1 |
Colors of variables: wff set class |
Syntax hints: class class class wbr 3987 0cc0 7761 1c1 7762 ≤ cle 7942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-cnex 7852 ax-resscn 7853 ax-1re 7855 ax-addrcl 7858 ax-0lt1 7867 ax-rnegex 7870 ax-pre-ltirr 7873 ax-pre-lttrn 7875 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-br 3988 df-opab 4049 df-xp 4615 df-cnv 4617 df-pnf 7943 df-mnf 7944 df-xr 7945 df-ltxr 7946 df-le 7947 |
This theorem is referenced by: lemulge11 8769 sup3exmid 8860 0le2 8955 1eluzge0 9520 0elunit 9930 1elunit 9931 fldiv4p1lem1div2 10248 q1mod 10299 expge0 10499 expge1 10500 faclbnd3 10664 sqrt1 10997 sqrt2gt1lt2 11000 abs1 11023 cvgratnnlembern 11473 fprodge0 11587 fprodge1 11589 ege2le3 11621 sinbnd 11702 cosbnd 11703 cos2bnd 11710 nn0oddm1d2 11855 flodddiv4 11880 sqnprm 12077 isprm5lem 12082 sqrt2irrap 12121 nn0sqrtelqelz 12147 pythagtriplem3 12208 sinhalfpilem 13465 zabsle1 13653 lgslem2 13655 lgsfcl2 13660 lgsdir2lem1 13682 lgsne0 13692 lgsdinn0 13702 trilpolemclim 14028 trilpolemlt1 14033 nconstwlpolemgt0 14055 |
Copyright terms: Public domain | W3C validator |