| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0le1 | GIF version | ||
| Description: 0 is less than or equal to 1. (Contributed by Mario Carneiro, 29-Apr-2015.) |
| Ref | Expression |
|---|---|
| 0le1 | ⊢ 0 ≤ 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 8045 | . 2 ⊢ 0 ∈ ℝ | |
| 2 | 1re 8044 | . 2 ⊢ 1 ∈ ℝ | |
| 3 | 0lt1 8172 | . 2 ⊢ 0 < 1 | |
| 4 | 1, 2, 3 | ltleii 8148 | 1 ⊢ 0 ≤ 1 |
| Colors of variables: wff set class |
| Syntax hints: class class class wbr 4034 0cc0 7898 1c1 7899 ≤ cle 8081 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7989 ax-resscn 7990 ax-1re 7992 ax-addrcl 7995 ax-0lt1 8004 ax-rnegex 8007 ax-pre-ltirr 8010 ax-pre-lttrn 8012 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-xp 4670 df-cnv 4672 df-pnf 8082 df-mnf 8083 df-xr 8084 df-ltxr 8085 df-le 8086 |
| This theorem is referenced by: lemulge11 8912 sup3exmid 9003 0le2 9099 1eluzge0 9667 0elunit 10080 1elunit 10081 fldiv4p1lem1div2 10414 q1mod 10467 expge0 10686 expge1 10687 faclbnd3 10854 sqrt1 11230 sqrt2gt1lt2 11233 abs1 11256 cvgratnnlembern 11707 fprodge0 11821 fprodge1 11823 ege2le3 11855 sinbnd 11936 cosbnd 11937 cos2bnd 11944 nn0oddm1d2 12093 flodddiv4 12120 sqnprm 12331 isprm5lem 12336 sqrt2irrap 12375 nn0sqrtelqelz 12401 pythagtriplem3 12463 sinhalfpilem 15135 zabsle1 15348 lgslem2 15350 lgsfcl2 15355 lgsdir2lem1 15377 lgsne0 15387 lgsdinn0 15397 m1lgs 15434 trilpolemclim 15793 trilpolemlt1 15798 nconstwlpolemgt0 15821 |
| Copyright terms: Public domain | W3C validator |