Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0le1 | GIF version |
Description: 0 is less than or equal to 1. (Contributed by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
0le1 | ⊢ 0 ≤ 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 7920 | . 2 ⊢ 0 ∈ ℝ | |
2 | 1re 7919 | . 2 ⊢ 1 ∈ ℝ | |
3 | 0lt1 8046 | . 2 ⊢ 0 < 1 | |
4 | 1, 2, 3 | ltleii 8022 | 1 ⊢ 0 ≤ 1 |
Colors of variables: wff set class |
Syntax hints: class class class wbr 3989 0cc0 7774 1c1 7775 ≤ cle 7955 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1re 7868 ax-addrcl 7871 ax-0lt1 7880 ax-rnegex 7883 ax-pre-ltirr 7886 ax-pre-lttrn 7888 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-xp 4617 df-cnv 4619 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 |
This theorem is referenced by: lemulge11 8782 sup3exmid 8873 0le2 8968 1eluzge0 9533 0elunit 9943 1elunit 9944 fldiv4p1lem1div2 10261 q1mod 10312 expge0 10512 expge1 10513 faclbnd3 10677 sqrt1 11010 sqrt2gt1lt2 11013 abs1 11036 cvgratnnlembern 11486 fprodge0 11600 fprodge1 11602 ege2le3 11634 sinbnd 11715 cosbnd 11716 cos2bnd 11723 nn0oddm1d2 11868 flodddiv4 11893 sqnprm 12090 isprm5lem 12095 sqrt2irrap 12134 nn0sqrtelqelz 12160 pythagtriplem3 12221 sinhalfpilem 13506 zabsle1 13694 lgslem2 13696 lgsfcl2 13701 lgsdir2lem1 13723 lgsne0 13733 lgsdinn0 13743 trilpolemclim 14068 trilpolemlt1 14073 nconstwlpolemgt0 14095 |
Copyright terms: Public domain | W3C validator |