| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0le1 | GIF version | ||
| Description: 0 is less than or equal to 1. (Contributed by Mario Carneiro, 29-Apr-2015.) |
| Ref | Expression |
|---|---|
| 0le1 | ⊢ 0 ≤ 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 8043 | . 2 ⊢ 0 ∈ ℝ | |
| 2 | 1re 8042 | . 2 ⊢ 1 ∈ ℝ | |
| 3 | 0lt1 8170 | . 2 ⊢ 0 < 1 | |
| 4 | 1, 2, 3 | ltleii 8146 | 1 ⊢ 0 ≤ 1 |
| Colors of variables: wff set class |
| Syntax hints: class class class wbr 4034 0cc0 7896 1c1 7897 ≤ cle 8079 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 ax-0lt1 8002 ax-rnegex 8005 ax-pre-ltirr 8008 ax-pre-lttrn 8010 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-xp 4670 df-cnv 4672 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 |
| This theorem is referenced by: lemulge11 8910 sup3exmid 9001 0le2 9097 1eluzge0 9665 0elunit 10078 1elunit 10079 fldiv4p1lem1div2 10412 q1mod 10465 expge0 10684 expge1 10685 faclbnd3 10852 sqrt1 11228 sqrt2gt1lt2 11231 abs1 11254 cvgratnnlembern 11705 fprodge0 11819 fprodge1 11821 ege2le3 11853 sinbnd 11934 cosbnd 11935 cos2bnd 11942 nn0oddm1d2 12091 flodddiv4 12118 sqnprm 12329 isprm5lem 12334 sqrt2irrap 12373 nn0sqrtelqelz 12399 pythagtriplem3 12461 sinhalfpilem 15111 zabsle1 15324 lgslem2 15326 lgsfcl2 15331 lgsdir2lem1 15353 lgsne0 15363 lgsdinn0 15373 m1lgs 15410 trilpolemclim 15767 trilpolemlt1 15772 nconstwlpolemgt0 15795 |
| Copyright terms: Public domain | W3C validator |