| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0le1 | GIF version | ||
| Description: 0 is less than or equal to 1. (Contributed by Mario Carneiro, 29-Apr-2015.) |
| Ref | Expression |
|---|---|
| 0le1 | ⊢ 0 ≤ 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 8092 | . 2 ⊢ 0 ∈ ℝ | |
| 2 | 1re 8091 | . 2 ⊢ 1 ∈ ℝ | |
| 3 | 0lt1 8219 | . 2 ⊢ 0 < 1 | |
| 4 | 1, 2, 3 | ltleii 8195 | 1 ⊢ 0 ≤ 1 |
| Colors of variables: wff set class |
| Syntax hints: class class class wbr 4051 0cc0 7945 1c1 7946 ≤ cle 8128 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1re 8039 ax-addrcl 8042 ax-0lt1 8051 ax-rnegex 8054 ax-pre-ltirr 8057 ax-pre-lttrn 8059 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-xp 4689 df-cnv 4691 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 |
| This theorem is referenced by: lemulge11 8959 sup3exmid 9050 0le2 9146 1eluzge0 9715 0elunit 10128 1elunit 10129 fldiv4p1lem1div2 10470 q1mod 10523 expge0 10742 expge1 10743 faclbnd3 10910 sqrt1 11432 sqrt2gt1lt2 11435 abs1 11458 cvgratnnlembern 11909 fprodge0 12023 fprodge1 12025 ege2le3 12057 sinbnd 12138 cosbnd 12139 cos2bnd 12146 nn0oddm1d2 12295 flodddiv4 12322 sqnprm 12533 isprm5lem 12538 sqrt2irrap 12577 nn0sqrtelqelz 12603 pythagtriplem3 12665 sinhalfpilem 15338 zabsle1 15551 lgslem2 15553 lgsfcl2 15558 lgsdir2lem1 15580 lgsne0 15590 lgsdinn0 15600 m1lgs 15637 trilpolemclim 16116 trilpolemlt1 16121 nconstwlpolemgt0 16144 |
| Copyright terms: Public domain | W3C validator |