Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0le1 | GIF version |
Description: 0 is less than or equal to 1. (Contributed by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
0le1 | ⊢ 0 ≤ 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 7895 | . 2 ⊢ 0 ∈ ℝ | |
2 | 1re 7894 | . 2 ⊢ 1 ∈ ℝ | |
3 | 0lt1 8021 | . 2 ⊢ 0 < 1 | |
4 | 1, 2, 3 | ltleii 7997 | 1 ⊢ 0 ≤ 1 |
Colors of variables: wff set class |
Syntax hints: class class class wbr 3981 0cc0 7749 1c1 7750 ≤ cle 7930 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-setind 4513 ax-cnex 7840 ax-resscn 7841 ax-1re 7843 ax-addrcl 7846 ax-0lt1 7855 ax-rnegex 7858 ax-pre-ltirr 7861 ax-pre-lttrn 7863 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-nel 2431 df-ral 2448 df-rex 2449 df-rab 2452 df-v 2727 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-br 3982 df-opab 4043 df-xp 4609 df-cnv 4611 df-pnf 7931 df-mnf 7932 df-xr 7933 df-ltxr 7934 df-le 7935 |
This theorem is referenced by: lemulge11 8757 sup3exmid 8848 0le2 8943 1eluzge0 9508 0elunit 9918 1elunit 9919 fldiv4p1lem1div2 10236 q1mod 10287 expge0 10487 expge1 10488 faclbnd3 10652 sqrt1 10984 sqrt2gt1lt2 10987 abs1 11010 cvgratnnlembern 11460 fprodge0 11574 fprodge1 11576 ege2le3 11608 sinbnd 11689 cosbnd 11690 cos2bnd 11697 nn0oddm1d2 11842 flodddiv4 11867 sqnprm 12064 isprm5lem 12069 sqrt2irrap 12108 nn0sqrtelqelz 12134 pythagtriplem3 12195 sinhalfpilem 13312 zabsle1 13500 lgslem2 13502 lgsfcl2 13507 lgsdir2lem1 13529 lgsne0 13539 lgsdinn0 13549 trilpolemclim 13875 trilpolemlt1 13880 nconstwlpolemgt0 13902 |
Copyright terms: Public domain | W3C validator |