| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0le1 | GIF version | ||
| Description: 0 is less than or equal to 1. (Contributed by Mario Carneiro, 29-Apr-2015.) |
| Ref | Expression |
|---|---|
| 0le1 | ⊢ 0 ≤ 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 8142 | . 2 ⊢ 0 ∈ ℝ | |
| 2 | 1re 8141 | . 2 ⊢ 1 ∈ ℝ | |
| 3 | 0lt1 8269 | . 2 ⊢ 0 < 1 | |
| 4 | 1, 2, 3 | ltleii 8245 | 1 ⊢ 0 ≤ 1 |
| Colors of variables: wff set class |
| Syntax hints: class class class wbr 4082 0cc0 7995 1c1 7996 ≤ cle 8178 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 ax-0lt1 8101 ax-rnegex 8104 ax-pre-ltirr 8107 ax-pre-lttrn 8109 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-xp 4724 df-cnv 4726 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 |
| This theorem is referenced by: lemulge11 9009 sup3exmid 9100 0le2 9196 1eluzge0 9765 0elunit 10178 1elunit 10179 fldiv4p1lem1div2 10520 q1mod 10573 expge0 10792 expge1 10793 faclbnd3 10960 sqrt1 11552 sqrt2gt1lt2 11555 abs1 11578 cvgratnnlembern 12029 fprodge0 12143 fprodge1 12145 ege2le3 12177 sinbnd 12258 cosbnd 12259 cos2bnd 12266 nn0oddm1d2 12415 flodddiv4 12442 sqnprm 12653 isprm5lem 12658 sqrt2irrap 12697 nn0sqrtelqelz 12723 pythagtriplem3 12785 sinhalfpilem 15459 zabsle1 15672 lgslem2 15674 lgsfcl2 15679 lgsdir2lem1 15701 lgsne0 15711 lgsdinn0 15721 m1lgs 15758 trilpolemclim 16363 trilpolemlt1 16368 nconstwlpolemgt0 16391 |
| Copyright terms: Public domain | W3C validator |