| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0le1 | GIF version | ||
| Description: 0 is less than or equal to 1. (Contributed by Mario Carneiro, 29-Apr-2015.) |
| Ref | Expression |
|---|---|
| 0le1 | ⊢ 0 ≤ 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 8071 | . 2 ⊢ 0 ∈ ℝ | |
| 2 | 1re 8070 | . 2 ⊢ 1 ∈ ℝ | |
| 3 | 0lt1 8198 | . 2 ⊢ 0 < 1 | |
| 4 | 1, 2, 3 | ltleii 8174 | 1 ⊢ 0 ≤ 1 |
| Colors of variables: wff set class |
| Syntax hints: class class class wbr 4043 0cc0 7924 1c1 7925 ≤ cle 8107 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1re 8018 ax-addrcl 8021 ax-0lt1 8030 ax-rnegex 8033 ax-pre-ltirr 8036 ax-pre-lttrn 8038 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-xp 4680 df-cnv 4682 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 |
| This theorem is referenced by: lemulge11 8938 sup3exmid 9029 0le2 9125 1eluzge0 9694 0elunit 10107 1elunit 10108 fldiv4p1lem1div2 10446 q1mod 10499 expge0 10718 expge1 10719 faclbnd3 10886 sqrt1 11299 sqrt2gt1lt2 11302 abs1 11325 cvgratnnlembern 11776 fprodge0 11890 fprodge1 11892 ege2le3 11924 sinbnd 12005 cosbnd 12006 cos2bnd 12013 nn0oddm1d2 12162 flodddiv4 12189 sqnprm 12400 isprm5lem 12405 sqrt2irrap 12444 nn0sqrtelqelz 12470 pythagtriplem3 12532 sinhalfpilem 15205 zabsle1 15418 lgslem2 15420 lgsfcl2 15425 lgsdir2lem1 15447 lgsne0 15457 lgsdinn0 15467 m1lgs 15504 trilpolemclim 15908 trilpolemlt1 15913 nconstwlpolemgt0 15936 |
| Copyright terms: Public domain | W3C validator |