| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0le1 | GIF version | ||
| Description: 0 is less than or equal to 1. (Contributed by Mario Carneiro, 29-Apr-2015.) |
| Ref | Expression |
|---|---|
| 0le1 | ⊢ 0 ≤ 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 8028 | . 2 ⊢ 0 ∈ ℝ | |
| 2 | 1re 8027 | . 2 ⊢ 1 ∈ ℝ | |
| 3 | 0lt1 8155 | . 2 ⊢ 0 < 1 | |
| 4 | 1, 2, 3 | ltleii 8131 | 1 ⊢ 0 ≤ 1 |
| Colors of variables: wff set class |
| Syntax hints: class class class wbr 4034 0cc0 7881 1c1 7882 ≤ cle 8064 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7972 ax-resscn 7973 ax-1re 7975 ax-addrcl 7978 ax-0lt1 7987 ax-rnegex 7990 ax-pre-ltirr 7993 ax-pre-lttrn 7995 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-xp 4670 df-cnv 4672 df-pnf 8065 df-mnf 8066 df-xr 8067 df-ltxr 8068 df-le 8069 |
| This theorem is referenced by: lemulge11 8895 sup3exmid 8986 0le2 9082 1eluzge0 9650 0elunit 10063 1elunit 10064 fldiv4p1lem1div2 10397 q1mod 10450 expge0 10669 expge1 10670 faclbnd3 10837 sqrt1 11213 sqrt2gt1lt2 11216 abs1 11239 cvgratnnlembern 11690 fprodge0 11804 fprodge1 11806 ege2le3 11838 sinbnd 11919 cosbnd 11920 cos2bnd 11927 nn0oddm1d2 12076 flodddiv4 12103 sqnprm 12314 isprm5lem 12319 sqrt2irrap 12358 nn0sqrtelqelz 12384 pythagtriplem3 12446 sinhalfpilem 15037 zabsle1 15250 lgslem2 15252 lgsfcl2 15257 lgsdir2lem1 15279 lgsne0 15289 lgsdinn0 15299 m1lgs 15336 trilpolemclim 15690 trilpolemlt1 15695 nconstwlpolemgt0 15718 |
| Copyright terms: Public domain | W3C validator |