Theorem List for Intuitionistic Logic Explorer - 8401-8500 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | pnpncand 8401 |
Addition/subtraction cancellation law. (Contributed by Scott Fenton,
14-Dec-2017.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 + (𝐵 − 𝐶)) + (𝐶 − 𝐵)) = 𝐴) |
| |
| Theorem | subeqrev 8402 |
Reverse the order of subtraction in an equality. (Contributed by Scott
Fenton, 8-Jul-2013.)
|
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 − 𝐵) = (𝐶 − 𝐷) ↔ (𝐵 − 𝐴) = (𝐷 − 𝐶))) |
| |
| Theorem | pncan1 8403 |
Cancellation law for addition and subtraction with 1. (Contributed by
Alexander van der Vekens, 3-Oct-2018.)
|
| ⊢ (𝐴 ∈ ℂ → ((𝐴 + 1) − 1) = 𝐴) |
| |
| Theorem | npcan1 8404 |
Cancellation law for subtraction and addition with 1. (Contributed by
Alexander van der Vekens, 5-Oct-2018.)
|
| ⊢ (𝐴 ∈ ℂ → ((𝐴 − 1) + 1) = 𝐴) |
| |
| Theorem | subeq0bd 8405 |
If two complex numbers are equal, their difference is zero. Consequence
of subeq0ad 8347. Converse of subeq0d 8345. Contrapositive of subne0ad 8348.
(Contributed by David Moews, 28-Feb-2017.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐴 − 𝐵) = 0) |
| |
| Theorem | renegcld 8406 |
Closure law for negative of reals. (Contributed by Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ)
⇒ ⊢ (𝜑 → -𝐴 ∈ ℝ) |
| |
| Theorem | resubcld 8407 |
Closure law for subtraction of reals. (Contributed by Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ)
⇒ ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℝ) |
| |
| Theorem | negf1o 8408* |
Negation is an isomorphism of a subset of the real numbers to the
negated elements of the subset. (Contributed by AV, 9-Aug-2020.)
|
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ -𝑥) ⇒ ⊢ (𝐴 ⊆ ℝ → 𝐹:𝐴–1-1-onto→{𝑛 ∈ ℝ ∣ -𝑛 ∈ 𝐴}) |
| |
| 4.3.3 Multiplication
|
| |
| Theorem | kcnktkm1cn 8409 |
k times k minus 1 is a complex number if k is a complex number.
(Contributed by Alexander van der Vekens, 11-Mar-2018.)
|
| ⊢ (𝐾 ∈ ℂ → (𝐾 · (𝐾 − 1)) ∈
ℂ) |
| |
| Theorem | muladd 8410 |
Product of two sums. (Contributed by NM, 14-Jan-2006.) (Proof shortened
by Andrew Salmon, 19-Nov-2011.)
|
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) · (𝐶 + 𝐷)) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) + ((𝐴 · 𝐷) + (𝐶 · 𝐵)))) |
| |
| Theorem | subdi 8411 |
Distribution of multiplication over subtraction. Theorem I.5 of [Apostol]
p. 18. (Contributed by NM, 18-Nov-2004.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 − 𝐶)) = ((𝐴 · 𝐵) − (𝐴 · 𝐶))) |
| |
| Theorem | subdir 8412 |
Distribution of multiplication over subtraction. Theorem I.5 of [Apostol]
p. 18. (Contributed by NM, 30-Dec-2005.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐵) · 𝐶) = ((𝐴 · 𝐶) − (𝐵 · 𝐶))) |
| |
| Theorem | mul02 8413 |
Multiplication by 0. Theorem I.6 of [Apostol] p. 18. (Contributed
by NM, 10-Aug-1999.)
|
| ⊢ (𝐴 ∈ ℂ → (0 · 𝐴) = 0) |
| |
| Theorem | mul02lem2 8414 |
Zero times a real is zero. Although we prove it as a corollary of
mul02 8413, the name is for consistency with the
Metamath Proof Explorer
which proves it before mul02 8413. (Contributed by Scott Fenton,
3-Jan-2013.)
|
| ⊢ (𝐴 ∈ ℝ → (0 · 𝐴) = 0) |
| |
| Theorem | mul01 8415 |
Multiplication by 0. Theorem I.6 of [Apostol] p. 18. (Contributed
by NM, 15-May-1999.) (Revised by Scott Fenton, 3-Jan-2013.)
|
| ⊢ (𝐴 ∈ ℂ → (𝐴 · 0) = 0) |
| |
| Theorem | mul02i 8416 |
Multiplication by 0. Theorem I.6 of [Apostol]
p. 18. (Contributed by
NM, 23-Nov-1994.)
|
| ⊢ 𝐴 ∈ ℂ
⇒ ⊢ (0 · 𝐴) = 0 |
| |
| Theorem | mul01i 8417 |
Multiplication by 0. Theorem I.6 of [Apostol] p. 18. (Contributed
by NM, 23-Nov-1994.) (Revised by Scott Fenton, 3-Jan-2013.)
|
| ⊢ 𝐴 ∈ ℂ
⇒ ⊢ (𝐴 · 0) = 0 |
| |
| Theorem | mul02d 8418 |
Multiplication by 0. Theorem I.6 of [Apostol]
p. 18. (Contributed by
Mario Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → (0 · 𝐴) = 0) |
| |
| Theorem | mul01d 8419 |
Multiplication by 0. Theorem I.6 of [Apostol] p. 18. (Contributed
by Mario Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → (𝐴 · 0) = 0) |
| |
| Theorem | ine0 8420 |
The imaginary unit i is not zero. (Contributed by NM,
6-May-1999.)
|
| ⊢ i ≠ 0 |
| |
| Theorem | mulneg1 8421 |
Product with negative is negative of product. Theorem I.12 of [Apostol]
p. 18. (Contributed by NM, 14-May-1999.) (Proof shortened by Mario
Carneiro, 27-May-2016.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 · 𝐵) = -(𝐴 · 𝐵)) |
| |
| Theorem | mulneg2 8422 |
The product with a negative is the negative of the product. (Contributed
by NM, 30-Jul-2004.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · -𝐵) = -(𝐴 · 𝐵)) |
| |
| Theorem | mulneg12 8423 |
Swap the negative sign in a product. (Contributed by NM, 30-Jul-2004.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 · 𝐵) = (𝐴 · -𝐵)) |
| |
| Theorem | mul2neg 8424 |
Product of two negatives. Theorem I.12 of [Apostol] p. 18. (Contributed
by NM, 30-Jul-2004.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 · -𝐵) = (𝐴 · 𝐵)) |
| |
| Theorem | submul2 8425 |
Convert a subtraction to addition using multiplication by a negative.
(Contributed by NM, 2-Feb-2007.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 − (𝐵 · 𝐶)) = (𝐴 + (𝐵 · -𝐶))) |
| |
| Theorem | mulm1 8426 |
Product with minus one is negative. (Contributed by NM, 16-Nov-1999.)
|
| ⊢ (𝐴 ∈ ℂ → (-1 · 𝐴) = -𝐴) |
| |
| Theorem | mulsub 8427 |
Product of two differences. (Contributed by NM, 14-Jan-2006.)
|
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 − 𝐵) · (𝐶 − 𝐷)) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) − ((𝐴 · 𝐷) + (𝐶 · 𝐵)))) |
| |
| Theorem | mulsub2 8428 |
Swap the order of subtraction in a multiplication. (Contributed by Scott
Fenton, 24-Jun-2013.)
|
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 − 𝐵) · (𝐶 − 𝐷)) = ((𝐵 − 𝐴) · (𝐷 − 𝐶))) |
| |
| Theorem | mulm1i 8429 |
Product with minus one is negative. (Contributed by NM,
31-Jul-1999.)
|
| ⊢ 𝐴 ∈ ℂ
⇒ ⊢ (-1 · 𝐴) = -𝐴 |
| |
| Theorem | mulneg1i 8430 |
Product with negative is negative of product. Theorem I.12 of [Apostol]
p. 18. (Contributed by NM, 10-Feb-1995.) (Revised by Mario Carneiro,
27-May-2016.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈
ℂ ⇒ ⊢ (-𝐴 · 𝐵) = -(𝐴 · 𝐵) |
| |
| Theorem | mulneg2i 8431 |
Product with negative is negative of product. (Contributed by NM,
31-Jul-1999.) (Revised by Mario Carneiro, 27-May-2016.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈
ℂ ⇒ ⊢ (𝐴 · -𝐵) = -(𝐴 · 𝐵) |
| |
| Theorem | mul2negi 8432 |
Product of two negatives. Theorem I.12 of [Apostol] p. 18.
(Contributed by NM, 14-Feb-1995.) (Revised by Mario Carneiro,
27-May-2016.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈
ℂ ⇒ ⊢ (-𝐴 · -𝐵) = (𝐴 · 𝐵) |
| |
| Theorem | subdii 8433 |
Distribution of multiplication over subtraction. Theorem I.5 of
[Apostol] p. 18. (Contributed by NM,
26-Nov-1994.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈
ℂ ⇒ ⊢ (𝐴 · (𝐵 − 𝐶)) = ((𝐴 · 𝐵) − (𝐴 · 𝐶)) |
| |
| Theorem | subdiri 8434 |
Distribution of multiplication over subtraction. Theorem I.5 of
[Apostol] p. 18. (Contributed by NM,
8-May-1999.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈
ℂ ⇒ ⊢ ((𝐴 − 𝐵) · 𝐶) = ((𝐴 · 𝐶) − (𝐵 · 𝐶)) |
| |
| Theorem | muladdi 8435 |
Product of two sums. (Contributed by NM, 17-May-1999.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐷 ∈
ℂ ⇒ ⊢ ((𝐴 + 𝐵) · (𝐶 + 𝐷)) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) + ((𝐴 · 𝐷) + (𝐶 · 𝐵))) |
| |
| Theorem | mulm1d 8436 |
Product with minus one is negative. (Contributed by Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → (-1 · 𝐴) = -𝐴) |
| |
| Theorem | mulneg1d 8437 |
Product with negative is negative of product. Theorem I.12 of [Apostol]
p. 18. (Contributed by Mario Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (-𝐴 · 𝐵) = -(𝐴 · 𝐵)) |
| |
| Theorem | mulneg2d 8438 |
Product with negative is negative of product. (Contributed by Mario
Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (𝐴 · -𝐵) = -(𝐴 · 𝐵)) |
| |
| Theorem | mul2negd 8439 |
Product of two negatives. Theorem I.12 of [Apostol] p. 18.
(Contributed by Mario Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (-𝐴 · -𝐵) = (𝐴 · 𝐵)) |
| |
| Theorem | subdid 8440 |
Distribution of multiplication over subtraction. Theorem I.5 of
[Apostol] p. 18. (Contributed by Mario
Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → (𝐴 · (𝐵 − 𝐶)) = ((𝐴 · 𝐵) − (𝐴 · 𝐶))) |
| |
| Theorem | subdird 8441 |
Distribution of multiplication over subtraction. Theorem I.5 of
[Apostol] p. 18. (Contributed by Mario
Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) · 𝐶) = ((𝐴 · 𝐶) − (𝐵 · 𝐶))) |
| |
| Theorem | muladdd 8442 |
Product of two sums. (Contributed by Mario Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) · (𝐶 + 𝐷)) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) + ((𝐴 · 𝐷) + (𝐶 · 𝐵)))) |
| |
| Theorem | mulsubd 8443 |
Product of two differences. (Contributed by Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) · (𝐶 − 𝐷)) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) − ((𝐴 · 𝐷) + (𝐶 · 𝐵)))) |
| |
| Theorem | muls1d 8444 |
Multiplication by one minus a number. (Contributed by Scott Fenton,
23-Dec-2017.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (𝐴 · (𝐵 − 1)) = ((𝐴 · 𝐵) − 𝐴)) |
| |
| Theorem | mulsubfacd 8445 |
Multiplication followed by the subtraction of a factor. (Contributed by
Alexander van der Vekens, 28-Aug-2018.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 · 𝐵) − 𝐵) = ((𝐴 − 1) · 𝐵)) |
| |
| 4.3.4 Ordering on reals (cont.)
|
| |
| Theorem | ltadd2 8446 |
Addition to both sides of 'less than'. (Contributed by NM,
12-Nov-1999.) (Revised by Mario Carneiro, 27-May-2016.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐶 + 𝐴) < (𝐶 + 𝐵))) |
| |
| Theorem | ltadd2i 8447 |
Addition to both sides of 'less than'. (Contributed by NM,
21-Jan-1997.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈
ℝ ⇒ ⊢ (𝐴 < 𝐵 ↔ (𝐶 + 𝐴) < (𝐶 + 𝐵)) |
| |
| Theorem | ltadd2d 8448 |
Addition to both sides of 'less than'. (Contributed by Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ)
⇒ ⊢ (𝜑 → (𝐴 < 𝐵 ↔ (𝐶 + 𝐴) < (𝐶 + 𝐵))) |
| |
| Theorem | ltadd2dd 8449 |
Addition to both sides of 'less than'. (Contributed by Mario
Carneiro, 30-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → (𝐶 + 𝐴) < (𝐶 + 𝐵)) |
| |
| Theorem | ltletrd 8450 |
Transitive law deduction for 'less than', 'less than or equal to'.
(Contributed by NM, 9-Jan-2006.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵)
& ⊢ (𝜑 → 𝐵 ≤ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 < 𝐶) |
| |
| Theorem | ltaddneg 8451 |
Adding a negative number to another number decreases it. (Contributed by
Glauco Siliprandi, 11-Dec-2019.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 0 ↔ (𝐵 + 𝐴) < 𝐵)) |
| |
| Theorem | ltaddnegr 8452 |
Adding a negative number to another number decreases it. (Contributed by
AV, 19-Mar-2021.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 0 ↔ (𝐴 + 𝐵) < 𝐵)) |
| |
| Theorem | lelttrdi 8453 |
If a number is less than another number, and the other number is less
than or equal to a third number, the first number is less than the third
number. (Contributed by Alexander van der Vekens, 24-Mar-2018.)
|
| ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) & ⊢ (𝜑 → 𝐵 ≤ 𝐶) ⇒ ⊢ (𝜑 → (𝐴 < 𝐵 → 𝐴 < 𝐶)) |
| |
| Theorem | gt0ne0 8454 |
Positive implies nonzero. (Contributed by NM, 3-Oct-1999.) (Proof
shortened by Mario Carneiro, 27-May-2016.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0) |
| |
| Theorem | lt0ne0 8455 |
A number which is less than zero is not zero. See also lt0ap0 8675 which is
similar but for apartness. (Contributed by Stefan O'Rear,
13-Sep-2014.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → 𝐴 ≠ 0) |
| |
| Theorem | ltadd1 8456 |
Addition to both sides of 'less than'. Part of definition 11.2.7(vi) of
[HoTT], p. (varies). (Contributed by NM,
12-Nov-1999.) (Proof shortened
by Mario Carneiro, 27-May-2016.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐴 + 𝐶) < (𝐵 + 𝐶))) |
| |
| Theorem | leadd1 8457 |
Addition to both sides of 'less than or equal to'. Part of definition
11.2.7(vi) of [HoTT], p. (varies).
(Contributed by NM, 18-Oct-1999.)
(Proof shortened by Mario Carneiro, 27-May-2016.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ (𝐴 + 𝐶) ≤ (𝐵 + 𝐶))) |
| |
| Theorem | leadd2 8458 |
Addition to both sides of 'less than or equal to'. (Contributed by NM,
26-Oct-1999.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ (𝐶 + 𝐴) ≤ (𝐶 + 𝐵))) |
| |
| Theorem | ltsubadd 8459 |
'Less than' relationship between subtraction and addition. (Contributed
by NM, 21-Jan-1997.) (Proof shortened by Mario Carneiro, 27-May-2016.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 − 𝐵) < 𝐶 ↔ 𝐴 < (𝐶 + 𝐵))) |
| |
| Theorem | ltsubadd2 8460 |
'Less than' relationship between subtraction and addition. (Contributed
by NM, 21-Jan-1997.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 − 𝐵) < 𝐶 ↔ 𝐴 < (𝐵 + 𝐶))) |
| |
| Theorem | lesubadd 8461 |
'Less than or equal to' relationship between subtraction and addition.
(Contributed by NM, 17-Nov-2004.) (Proof shortened by Mario Carneiro,
27-May-2016.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 − 𝐵) ≤ 𝐶 ↔ 𝐴 ≤ (𝐶 + 𝐵))) |
| |
| Theorem | lesubadd2 8462 |
'Less than or equal to' relationship between subtraction and addition.
(Contributed by NM, 10-Aug-1999.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 − 𝐵) ≤ 𝐶 ↔ 𝐴 ≤ (𝐵 + 𝐶))) |
| |
| Theorem | ltaddsub 8463 |
'Less than' relationship between addition and subtraction. (Contributed
by NM, 17-Nov-2004.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) < 𝐶 ↔ 𝐴 < (𝐶 − 𝐵))) |
| |
| Theorem | ltaddsub2 8464 |
'Less than' relationship between addition and subtraction. (Contributed
by NM, 17-Nov-2004.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) < 𝐶 ↔ 𝐵 < (𝐶 − 𝐴))) |
| |
| Theorem | leaddsub 8465 |
'Less than or equal to' relationship between addition and subtraction.
(Contributed by NM, 6-Apr-2005.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) ≤ 𝐶 ↔ 𝐴 ≤ (𝐶 − 𝐵))) |
| |
| Theorem | leaddsub2 8466 |
'Less than or equal to' relationship between and addition and subtraction.
(Contributed by NM, 6-Apr-2005.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) ≤ 𝐶 ↔ 𝐵 ≤ (𝐶 − 𝐴))) |
| |
| Theorem | suble 8467 |
Swap subtrahends in an inequality. (Contributed by NM, 29-Sep-2005.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 − 𝐵) ≤ 𝐶 ↔ (𝐴 − 𝐶) ≤ 𝐵)) |
| |
| Theorem | lesub 8468 |
Swap subtrahends in an inequality. (Contributed by NM, 29-Sep-2005.)
(Proof shortened by Andrew Salmon, 19-Nov-2011.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ (𝐵 − 𝐶) ↔ 𝐶 ≤ (𝐵 − 𝐴))) |
| |
| Theorem | ltsub23 8469 |
'Less than' relationship between subtraction and addition. (Contributed
by NM, 4-Oct-1999.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 − 𝐵) < 𝐶 ↔ (𝐴 − 𝐶) < 𝐵)) |
| |
| Theorem | ltsub13 8470 |
'Less than' relationship between subtraction and addition. (Contributed
by NM, 17-Nov-2004.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < (𝐵 − 𝐶) ↔ 𝐶 < (𝐵 − 𝐴))) |
| |
| Theorem | le2add 8471 |
Adding both sides of two 'less than or equal to' relations. (Contributed
by NM, 17-Apr-2005.) (Proof shortened by Mario Carneiro, 27-May-2016.)
|
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐷) → (𝐴 + 𝐵) ≤ (𝐶 + 𝐷))) |
| |
| Theorem | lt2add 8472 |
Adding both sides of two 'less than' relations. Theorem I.25 of [Apostol]
p. 20. (Contributed by NM, 15-Aug-1999.) (Proof shortened by Mario
Carneiro, 27-May-2016.)
|
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 < 𝐶 ∧ 𝐵 < 𝐷) → (𝐴 + 𝐵) < (𝐶 + 𝐷))) |
| |
| Theorem | ltleadd 8473 |
Adding both sides of two orderings. (Contributed by NM, 23-Dec-2007.)
|
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 < 𝐶 ∧ 𝐵 ≤ 𝐷) → (𝐴 + 𝐵) < (𝐶 + 𝐷))) |
| |
| Theorem | leltadd 8474 |
Adding both sides of two orderings. (Contributed by NM, 15-Aug-2008.)
|
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 ≤ 𝐶 ∧ 𝐵 < 𝐷) → (𝐴 + 𝐵) < (𝐶 + 𝐷))) |
| |
| Theorem | addgt0 8475 |
The sum of 2 positive numbers is positive. (Contributed by NM,
1-Jun-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
|
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < 𝐵)) → 0 < (𝐴 + 𝐵)) |
| |
| Theorem | addgegt0 8476 |
The sum of nonnegative and positive numbers is positive. (Contributed by
NM, 28-Dec-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
|
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 < 𝐵)) → 0 < (𝐴 + 𝐵)) |
| |
| Theorem | addgtge0 8477 |
The sum of nonnegative and positive numbers is positive. (Contributed by
NM, 28-Dec-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
|
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 ≤ 𝐵)) → 0 < (𝐴 + 𝐵)) |
| |
| Theorem | addge0 8478 |
The sum of 2 nonnegative numbers is nonnegative. (Contributed by NM,
17-Mar-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
|
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 + 𝐵)) |
| |
| Theorem | ltaddpos 8479 |
Adding a positive number to another number increases it. (Contributed by
NM, 17-Nov-2004.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐴 ↔ 𝐵 < (𝐵 + 𝐴))) |
| |
| Theorem | ltaddpos2 8480 |
Adding a positive number to another number increases it. (Contributed by
NM, 8-Apr-2005.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐴 ↔ 𝐵 < (𝐴 + 𝐵))) |
| |
| Theorem | ltsubpos 8481 |
Subtracting a positive number from another number decreases it.
(Contributed by NM, 17-Nov-2004.) (Proof shortened by Andrew Salmon,
19-Nov-2011.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐴 ↔ (𝐵 − 𝐴) < 𝐵)) |
| |
| Theorem | posdif 8482 |
Comparison of two numbers whose difference is positive. (Contributed by
NM, 17-Nov-2004.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 0 < (𝐵 − 𝐴))) |
| |
| Theorem | lesub1 8483 |
Subtraction from both sides of 'less than or equal to'. (Contributed by
NM, 13-May-2004.) (Proof shortened by Mario Carneiro, 27-May-2016.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ (𝐴 − 𝐶) ≤ (𝐵 − 𝐶))) |
| |
| Theorem | lesub2 8484 |
Subtraction of both sides of 'less than or equal to'. (Contributed by NM,
29-Sep-2005.) (Revised by Mario Carneiro, 27-May-2016.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ (𝐶 − 𝐵) ≤ (𝐶 − 𝐴))) |
| |
| Theorem | ltsub1 8485 |
Subtraction from both sides of 'less than'. (Contributed by FL,
3-Jan-2008.) (Proof shortened by Mario Carneiro, 27-May-2016.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐴 − 𝐶) < (𝐵 − 𝐶))) |
| |
| Theorem | ltsub2 8486 |
Subtraction of both sides of 'less than'. (Contributed by NM,
29-Sep-2005.) (Proof shortened by Mario Carneiro, 27-May-2016.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐶 − 𝐵) < (𝐶 − 𝐴))) |
| |
| Theorem | lt2sub 8487 |
Subtracting both sides of two 'less than' relations. (Contributed by
Mario Carneiro, 14-Apr-2016.)
|
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 < 𝐶 ∧ 𝐷 < 𝐵) → (𝐴 − 𝐵) < (𝐶 − 𝐷))) |
| |
| Theorem | le2sub 8488 |
Subtracting both sides of two 'less than or equal to' relations.
(Contributed by Mario Carneiro, 14-Apr-2016.)
|
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 ≤ 𝐶 ∧ 𝐷 ≤ 𝐵) → (𝐴 − 𝐵) ≤ (𝐶 − 𝐷))) |
| |
| Theorem | ltneg 8489 |
Negative of both sides of 'less than'. Theorem I.23 of [Apostol] p. 20.
(Contributed by NM, 27-Aug-1999.) (Proof shortened by Mario Carneiro,
27-May-2016.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ -𝐵 < -𝐴)) |
| |
| Theorem | ltnegcon1 8490 |
Contraposition of negative in 'less than'. (Contributed by NM,
8-Nov-2004.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐴 < 𝐵 ↔ -𝐵 < 𝐴)) |
| |
| Theorem | ltnegcon2 8491 |
Contraposition of negative in 'less than'. (Contributed by Mario
Carneiro, 25-Feb-2015.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < -𝐵 ↔ 𝐵 < -𝐴)) |
| |
| Theorem | leneg 8492 |
Negative of both sides of 'less than or equal to'. (Contributed by NM,
12-Sep-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ -𝐵 ≤ -𝐴)) |
| |
| Theorem | lenegcon1 8493 |
Contraposition of negative in 'less than or equal to'. (Contributed by
NM, 10-May-2004.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐴 ≤ 𝐵 ↔ -𝐵 ≤ 𝐴)) |
| |
| Theorem | lenegcon2 8494 |
Contraposition of negative in 'less than or equal to'. (Contributed by
NM, 8-Oct-2005.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ -𝐵 ↔ 𝐵 ≤ -𝐴)) |
| |
| Theorem | lt0neg1 8495 |
Comparison of a number and its negative to zero. Theorem I.23 of
[Apostol] p. 20. (Contributed by NM,
14-May-1999.)
|
| ⊢ (𝐴 ∈ ℝ → (𝐴 < 0 ↔ 0 < -𝐴)) |
| |
| Theorem | lt0neg2 8496 |
Comparison of a number and its negative to zero. (Contributed by NM,
10-May-2004.)
|
| ⊢ (𝐴 ∈ ℝ → (0 < 𝐴 ↔ -𝐴 < 0)) |
| |
| Theorem | le0neg1 8497 |
Comparison of a number and its negative to zero. (Contributed by NM,
10-May-2004.)
|
| ⊢ (𝐴 ∈ ℝ → (𝐴 ≤ 0 ↔ 0 ≤ -𝐴)) |
| |
| Theorem | le0neg2 8498 |
Comparison of a number and its negative to zero. (Contributed by NM,
24-Aug-1999.)
|
| ⊢ (𝐴 ∈ ℝ → (0 ≤ 𝐴 ↔ -𝐴 ≤ 0)) |
| |
| Theorem | addge01 8499 |
A number is less than or equal to itself plus a nonnegative number.
(Contributed by NM, 21-Feb-2005.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ 𝐵 ↔ 𝐴 ≤ (𝐴 + 𝐵))) |
| |
| Theorem | addge02 8500 |
A number is less than or equal to itself plus a nonnegative number.
(Contributed by NM, 27-Jul-2005.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ 𝐵 ↔ 𝐴 ≤ (𝐵 + 𝐴))) |