HomeHome Intuitionistic Logic Explorer
Theorem List (p. 85 of 135)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 8401-8500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremmulap0r 8401 A product apart from zero. Lemma 2.13 of [Geuvers], p. 6. (Contributed by Jim Kingdon, 24-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐴 · 𝐵) # 0) → (𝐴 # 0 ∧ 𝐵 # 0))
 
Theoremmsqge0 8402 A square is nonnegative. Lemma 2.35 of [Geuvers], p. 9. (Contributed by NM, 23-May-2007.) (Revised by Mario Carneiro, 27-May-2016.)
(𝐴 ∈ ℝ → 0 ≤ (𝐴 · 𝐴))
 
Theoremmsqge0i 8403 A square is nonnegative. (Contributed by NM, 14-May-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
𝐴 ∈ ℝ       0 ≤ (𝐴 · 𝐴)
 
Theoremmsqge0d 8404 A square is nonnegative. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)       (𝜑 → 0 ≤ (𝐴 · 𝐴))
 
Theoremmulge0 8405 The product of two nonnegative numbers is nonnegative. (Contributed by NM, 8-Oct-1999.) (Revised by Mario Carneiro, 27-May-2016.)
(((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 · 𝐵))
 
Theoremmulge0i 8406 The product of two nonnegative numbers is nonnegative. (Contributed by NM, 30-Jul-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → 0 ≤ (𝐴 · 𝐵))
 
Theoremmulge0d 8407 The product of two nonnegative numbers is nonnegative. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑 → 0 ≤ 𝐵)       (𝜑 → 0 ≤ (𝐴 · 𝐵))
 
Theoremapti 8408 Complex apartness is tight. (Contributed by Jim Kingdon, 21-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 = 𝐵 ↔ ¬ 𝐴 # 𝐵))
 
Theoremapne 8409 Apartness implies negated equality. We cannot in general prove the converse (as shown at neapmkv 13425), which is the whole point of having separate notations for apartness and negated equality. (Contributed by Jim Kingdon, 21-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 # 𝐵𝐴𝐵))
 
Theoremapcon4bid 8410 Contrapositive law deduction for apartness. (Contributed by Jim Kingdon, 31-Jul-2023.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐷 ∈ ℂ)    &   (𝜑 → (𝐴 # 𝐵𝐶 # 𝐷))       (𝜑 → (𝐴 = 𝐵𝐶 = 𝐷))
 
Theoremleltap 8411 implies 'less than' is 'apart'. (Contributed by Jim Kingdon, 13-Aug-2021.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (𝐴 < 𝐵𝐵 # 𝐴))
 
Theoremgt0ap0 8412 Positive implies apart from zero. (Contributed by Jim Kingdon, 27-Feb-2020.)
((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 # 0)
 
Theoremgt0ap0i 8413 Positive means apart from zero (useful for ordering theorems involving division). (Contributed by Jim Kingdon, 27-Feb-2020.)
𝐴 ∈ ℝ       (0 < 𝐴𝐴 # 0)
 
Theoremgt0ap0ii 8414 Positive implies apart from zero. (Contributed by Jim Kingdon, 27-Feb-2020.)
𝐴 ∈ ℝ    &   0 < 𝐴       𝐴 # 0
 
Theoremgt0ap0d 8415 Positive implies apart from zero. Because of the way we define #, 𝐴 must be an element of , not just *. (Contributed by Jim Kingdon, 27-Feb-2020.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 < 𝐴)       (𝜑𝐴 # 0)
 
Theoremnegap0 8416 A number is apart from zero iff its negative is apart from zero. (Contributed by Jim Kingdon, 27-Feb-2020.)
(𝐴 ∈ ℂ → (𝐴 # 0 ↔ -𝐴 # 0))
 
Theoremnegap0d 8417 The negative of a number apart from zero is apart from zero. (Contributed by Jim Kingdon, 25-Feb-2024.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐴 # 0)       (𝜑 → -𝐴 # 0)
 
Theoremltleap 8418 Less than in terms of non-strict order and apartness. (Contributed by Jim Kingdon, 28-Feb-2020.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐴𝐵𝐴 # 𝐵)))
 
Theoremltap 8419 'Less than' implies apart. (Contributed by Jim Kingdon, 12-Aug-2021.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 # 𝐴)
 
Theoremgtapii 8420 'Greater than' implies apart. (Contributed by Jim Kingdon, 12-Aug-2021.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   𝐴 < 𝐵       𝐵 # 𝐴
 
Theoremltapii 8421 'Less than' implies apart. (Contributed by Jim Kingdon, 12-Aug-2021.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   𝐴 < 𝐵       𝐴 # 𝐵
 
Theoremltapi 8422 'Less than' implies apart. (Contributed by Jim Kingdon, 12-Aug-2021.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       (𝐴 < 𝐵𝐵 # 𝐴)
 
Theoremgtapd 8423 'Greater than' implies apart. (Contributed by Jim Kingdon, 12-Aug-2021.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)       (𝜑𝐵 # 𝐴)
 
Theoremltapd 8424 'Less than' implies apart. (Contributed by Jim Kingdon, 12-Aug-2021.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)       (𝜑𝐴 # 𝐵)
 
Theoremleltapd 8425 implies 'less than' is 'apart'. (Contributed by Jim Kingdon, 13-Aug-2021.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴𝐵)       (𝜑 → (𝐴 < 𝐵𝐵 # 𝐴))
 
Theoremap0gt0 8426 A nonnegative number is apart from zero if and only if it is positive. (Contributed by Jim Kingdon, 11-Aug-2021.)
((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 # 0 ↔ 0 < 𝐴))
 
Theoremap0gt0d 8427 A nonzero nonnegative number is positive. (Contributed by Jim Kingdon, 11-Aug-2021.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝐴 # 0)       (𝜑 → 0 < 𝐴)
 
Theoremapsub1 8428 Subtraction respects apartness. Analogue of subcan2 8011 for apartness. (Contributed by Jim Kingdon, 6-Jan-2022.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 # 𝐵 ↔ (𝐴𝐶) # (𝐵𝐶)))
 
Theoremsubap0 8429 Two numbers being apart is equivalent to their difference being apart from zero. (Contributed by Jim Kingdon, 25-Dec-2022.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝐵) # 0 ↔ 𝐴 # 𝐵))
 
Theoremsubap0d 8430 Two numbers apart from each other have difference apart from zero. (Contributed by Jim Kingdon, 12-Aug-2021.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐴 # 𝐵)       (𝜑 → (𝐴𝐵) # 0)
 
Theoremcnstab 8431 Equality of complex numbers is stable. Stability here means ¬ ¬ 𝐴 = 𝐵𝐴 = 𝐵 as defined at df-stab 817. This theorem for real numbers is Proposition 5.2 of [BauerHanson], p. 27. (Contributed by Jim Kingdon, 1-Aug-2023.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → STAB 𝐴 = 𝐵)
 
Theoremaprcl 8432 Reverse closure for apartness. (Contributed by Jim Kingdon, 19-Dec-2023.)
(𝐴 # 𝐵 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ))
 
Theoremapsscn 8433* The points apart from a given point are complex numbers. (Contributed by Jim Kingdon, 19-Dec-2023.)
{𝑥𝐴𝑥 # 𝐵} ⊆ ℂ
 
Theoremlt0ap0 8434 A number which is less than zero is apart from zero. (Contributed by Jim Kingdon, 25-Feb-2024.)
((𝐴 ∈ ℝ ∧ 𝐴 < 0) → 𝐴 # 0)
 
Theoremlt0ap0d 8435 A real number less than zero is apart from zero. Deduction form. (Contributed by Jim Kingdon, 24-Feb-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐴 < 0)       (𝜑𝐴 # 0)
 
4.3.7  Reciprocals
 
Theoremrecextlem1 8436 Lemma for recexap 8438. (Contributed by Eric Schmidt, 23-May-2007.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + (i · 𝐵)) · (𝐴 − (i · 𝐵))) = ((𝐴 · 𝐴) + (𝐵 · 𝐵)))
 
Theoremrecexaplem2 8437 Lemma for recexap 8438. (Contributed by Jim Kingdon, 20-Feb-2020.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 + (i · 𝐵)) # 0) → ((𝐴 · 𝐴) + (𝐵 · 𝐵)) # 0)
 
Theoremrecexap 8438* Existence of reciprocal of nonzero complex number. (Contributed by Jim Kingdon, 20-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐴 # 0) → ∃𝑥 ∈ ℂ (𝐴 · 𝑥) = 1)
 
Theoremmulap0 8439 The product of two numbers apart from zero is apart from zero. Lemma 2.15 of [Geuvers], p. 6. (Contributed by Jim Kingdon, 22-Feb-2020.)
(((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → (𝐴 · 𝐵) # 0)
 
Theoremmulap0b 8440 The product of two numbers apart from zero is apart from zero. (Contributed by Jim Kingdon, 24-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 # 0 ∧ 𝐵 # 0) ↔ (𝐴 · 𝐵) # 0))
 
Theoremmulap0i 8441 The product of two numbers apart from zero is apart from zero. (Contributed by Jim Kingdon, 23-Feb-2020.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐴 # 0    &   𝐵 # 0       (𝐴 · 𝐵) # 0
 
Theoremmulap0bd 8442 The product of two numbers apart from zero is apart from zero. Exercise 11.11 of [HoTT], p. (varies). (Contributed by Jim Kingdon, 24-Feb-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → ((𝐴 # 0 ∧ 𝐵 # 0) ↔ (𝐴 · 𝐵) # 0))
 
Theoremmulap0d 8443 The product of two numbers apart from zero is apart from zero. (Contributed by Jim Kingdon, 23-Feb-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐴 # 0)    &   (𝜑𝐵 # 0)       (𝜑 → (𝐴 · 𝐵) # 0)
 
Theoremmulap0bad 8444 A factor of a complex number apart from zero is apart from zero. Partial converse of mulap0d 8443 and consequence of mulap0bd 8442. (Contributed by Jim Kingdon, 24-Feb-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑 → (𝐴 · 𝐵) # 0)       (𝜑𝐴 # 0)
 
Theoremmulap0bbd 8445 A factor of a complex number apart from zero is apart from zero. Partial converse of mulap0d 8443 and consequence of mulap0bd 8442. (Contributed by Jim Kingdon, 24-Feb-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑 → (𝐴 · 𝐵) # 0)       (𝜑𝐵 # 0)
 
Theoremmulcanapd 8446 Cancellation law for multiplication. (Contributed by Jim Kingdon, 21-Feb-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐶 # 0)       (𝜑 → ((𝐶 · 𝐴) = (𝐶 · 𝐵) ↔ 𝐴 = 𝐵))
 
Theoremmulcanap2d 8447 Cancellation law for multiplication. (Contributed by Jim Kingdon, 21-Feb-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐶 # 0)       (𝜑 → ((𝐴 · 𝐶) = (𝐵 · 𝐶) ↔ 𝐴 = 𝐵))
 
Theoremmulcanapad 8448 Cancellation of a nonzero factor on the left in an equation. One-way deduction form of mulcanapd 8446. (Contributed by Jim Kingdon, 21-Feb-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐶 # 0)    &   (𝜑 → (𝐶 · 𝐴) = (𝐶 · 𝐵))       (𝜑𝐴 = 𝐵)
 
Theoremmulcanap2ad 8449 Cancellation of a nonzero factor on the right in an equation. One-way deduction form of mulcanap2d 8447. (Contributed by Jim Kingdon, 21-Feb-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐶 # 0)    &   (𝜑 → (𝐴 · 𝐶) = (𝐵 · 𝐶))       (𝜑𝐴 = 𝐵)
 
Theoremmulcanap 8450 Cancellation law for multiplication (full theorem form). (Contributed by Jim Kingdon, 21-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐶 · 𝐴) = (𝐶 · 𝐵) ↔ 𝐴 = 𝐵))
 
Theoremmulcanap2 8451 Cancellation law for multiplication. (Contributed by Jim Kingdon, 21-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 · 𝐶) = (𝐵 · 𝐶) ↔ 𝐴 = 𝐵))
 
Theoremmulcanapi 8452 Cancellation law for multiplication. (Contributed by Jim Kingdon, 21-Feb-2020.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ    &   𝐶 # 0       ((𝐶 · 𝐴) = (𝐶 · 𝐵) ↔ 𝐴 = 𝐵)
 
Theoremmuleqadd 8453 Property of numbers whose product equals their sum. Equation 5 of [Kreyszig] p. 12. (Contributed by NM, 13-Nov-2006.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) = (𝐴 + 𝐵) ↔ ((𝐴 − 1) · (𝐵 − 1)) = 1))
 
Theoremreceuap 8454* Existential uniqueness of reciprocals. (Contributed by Jim Kingdon, 21-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → ∃!𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴)
 
Theoremmul0eqap 8455 If two numbers are apart from each other and their product is zero, one of them must be zero. (Contributed by Jim Kingdon, 31-Jul-2023.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐴 # 𝐵)    &   (𝜑 → (𝐴 · 𝐵) = 0)       (𝜑 → (𝐴 = 0 ∨ 𝐵 = 0))
 
4.3.8  Division
 
Syntaxcdiv 8456 Extend class notation to include division.
class /
 
Definitiondf-div 8457* Define division. Theorem divmulap 8459 relates it to multiplication, and divclap 8462 and redivclap 8515 prove its closure laws. (Contributed by NM, 2-Feb-1995.) Use divvalap 8458 instead. (Revised by Mario Carneiro, 1-Apr-2014.) (New usage is discouraged.)
/ = (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥))
 
Theoremdivvalap 8458* Value of division: the (unique) element 𝑥 such that (𝐵 · 𝑥) = 𝐴. This is meaningful only when 𝐵 is apart from zero. (Contributed by Jim Kingdon, 21-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐴 / 𝐵) = (𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴))
 
Theoremdivmulap 8459 Relationship between division and multiplication. (Contributed by Jim Kingdon, 22-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 / 𝐶) = 𝐵 ↔ (𝐶 · 𝐵) = 𝐴))
 
Theoremdivmulap2 8460 Relationship between division and multiplication. (Contributed by Jim Kingdon, 22-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 / 𝐶) = 𝐵𝐴 = (𝐶 · 𝐵)))
 
Theoremdivmulap3 8461 Relationship between division and multiplication. (Contributed by Jim Kingdon, 22-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 / 𝐶) = 𝐵𝐴 = (𝐵 · 𝐶)))
 
Theoremdivclap 8462 Closure law for division. (Contributed by Jim Kingdon, 22-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐴 / 𝐵) ∈ ℂ)
 
Theoremrecclap 8463 Closure law for reciprocal. (Contributed by Jim Kingdon, 22-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (1 / 𝐴) ∈ ℂ)
 
Theoremdivcanap2 8464 A cancellation law for division. (Contributed by Jim Kingdon, 22-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐵 · (𝐴 / 𝐵)) = 𝐴)
 
Theoremdivcanap1 8465 A cancellation law for division. (Contributed by Jim Kingdon, 22-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → ((𝐴 / 𝐵) · 𝐵) = 𝐴)
 
Theoremdiveqap0 8466 A ratio is zero iff the numerator is zero. (Contributed by Jim Kingdon, 22-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → ((𝐴 / 𝐵) = 0 ↔ 𝐴 = 0))
 
Theoremdivap0b 8467 The ratio of numbers apart from zero is apart from zero. (Contributed by Jim Kingdon, 22-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐴 # 0 ↔ (𝐴 / 𝐵) # 0))
 
Theoremdivap0 8468 The ratio of numbers apart from zero is apart from zero. (Contributed by Jim Kingdon, 22-Feb-2020.)
(((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → (𝐴 / 𝐵) # 0)
 
Theoremrecap0 8469 The reciprocal of a number apart from zero is apart from zero. (Contributed by Jim Kingdon, 24-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (1 / 𝐴) # 0)
 
Theoremrecidap 8470 Multiplication of a number and its reciprocal. (Contributed by Jim Kingdon, 24-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (𝐴 · (1 / 𝐴)) = 1)
 
Theoremrecidap2 8471 Multiplication of a number and its reciprocal. (Contributed by Jim Kingdon, 24-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐴 # 0) → ((1 / 𝐴) · 𝐴) = 1)
 
Theoremdivrecap 8472 Relationship between division and reciprocal. (Contributed by Jim Kingdon, 24-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵)))
 
Theoremdivrecap2 8473 Relationship between division and reciprocal. (Contributed by Jim Kingdon, 25-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐴 / 𝐵) = ((1 / 𝐵) · 𝐴))
 
Theoremdivassap 8474 An associative law for division. (Contributed by Jim Kingdon, 25-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 · 𝐵) / 𝐶) = (𝐴 · (𝐵 / 𝐶)))
 
Theoremdiv23ap 8475 A commutative/associative law for division. (Contributed by Jim Kingdon, 25-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 · 𝐵) / 𝐶) = ((𝐴 / 𝐶) · 𝐵))
 
Theoremdiv32ap 8476 A commutative/associative law for division. (Contributed by Jim Kingdon, 25-Feb-2020.)
((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ 𝐶 ∈ ℂ) → ((𝐴 / 𝐵) · 𝐶) = (𝐴 · (𝐶 / 𝐵)))
 
Theoremdiv13ap 8477 A commutative/associative law for division. (Contributed by Jim Kingdon, 25-Feb-2020.)
((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ 𝐶 ∈ ℂ) → ((𝐴 / 𝐵) · 𝐶) = ((𝐶 / 𝐵) · 𝐴))
 
Theoremdiv12ap 8478 A commutative/associative law for division. (Contributed by Jim Kingdon, 25-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (𝐴 · (𝐵 / 𝐶)) = (𝐵 · (𝐴 / 𝐶)))
 
Theoremdivmulassap 8479 An associative law for division and multiplication. (Contributed by Jim Kingdon, 24-Jan-2022.)
(((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0)) → ((𝐴 · (𝐵 / 𝐷)) · 𝐶) = ((𝐴 · 𝐵) · (𝐶 / 𝐷)))
 
Theoremdivmulasscomap 8480 An associative/commutative law for division and multiplication. (Contributed by Jim Kingdon, 24-Jan-2022.)
(((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0)) → ((𝐴 · (𝐵 / 𝐷)) · 𝐶) = (𝐵 · ((𝐴 · 𝐶) / 𝐷)))
 
Theoremdivdirap 8481 Distribution of division over addition. (Contributed by Jim Kingdon, 25-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 + 𝐵) / 𝐶) = ((𝐴 / 𝐶) + (𝐵 / 𝐶)))
 
Theoremdivcanap3 8482 A cancellation law for division. (Contributed by Jim Kingdon, 25-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → ((𝐵 · 𝐴) / 𝐵) = 𝐴)
 
Theoremdivcanap4 8483 A cancellation law for division. (Contributed by Jim Kingdon, 25-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → ((𝐴 · 𝐵) / 𝐵) = 𝐴)
 
Theoremdiv11ap 8484 One-to-one relationship for division. (Contributed by Jim Kingdon, 25-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 / 𝐶) = (𝐵 / 𝐶) ↔ 𝐴 = 𝐵))
 
Theoremdividap 8485 A number divided by itself is one. (Contributed by Jim Kingdon, 25-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (𝐴 / 𝐴) = 1)
 
Theoremdiv0ap 8486 Division into zero is zero. (Contributed by Jim Kingdon, 25-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (0 / 𝐴) = 0)
 
Theoremdiv1 8487 A number divided by 1 is itself. (Contributed by NM, 9-Jan-2002.) (Proof shortened by Mario Carneiro, 27-May-2016.)
(𝐴 ∈ ℂ → (𝐴 / 1) = 𝐴)
 
Theorem1div1e1 8488 1 divided by 1 is 1 (common case). (Contributed by David A. Wheeler, 7-Dec-2018.)
(1 / 1) = 1
 
Theoremdiveqap1 8489 Equality in terms of unit ratio. (Contributed by Jim Kingdon, 25-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → ((𝐴 / 𝐵) = 1 ↔ 𝐴 = 𝐵))
 
Theoremdivnegap 8490 Move negative sign inside of a division. (Contributed by Jim Kingdon, 25-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → -(𝐴 / 𝐵) = (-𝐴 / 𝐵))
 
Theoremmuldivdirap 8491 Distribution of division over addition with a multiplication. (Contributed by Jim Kingdon, 11-Nov-2021.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (((𝐶 · 𝐴) + 𝐵) / 𝐶) = (𝐴 + (𝐵 / 𝐶)))
 
Theoremdivsubdirap 8492 Distribution of division over subtraction. (Contributed by NM, 4-Mar-2005.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴𝐵) / 𝐶) = ((𝐴 / 𝐶) − (𝐵 / 𝐶)))
 
Theoremrecrecap 8493 A number is equal to the reciprocal of its reciprocal. (Contributed by Jim Kingdon, 25-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (1 / (1 / 𝐴)) = 𝐴)
 
Theoremrec11ap 8494 Reciprocal is one-to-one. (Contributed by Jim Kingdon, 25-Feb-2020.)
(((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → ((1 / 𝐴) = (1 / 𝐵) ↔ 𝐴 = 𝐵))
 
Theoremrec11rap 8495 Mutual reciprocals. (Contributed by Jim Kingdon, 25-Feb-2020.)
(((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → ((1 / 𝐴) = 𝐵 ↔ (1 / 𝐵) = 𝐴))
 
Theoremdivmuldivap 8496 Multiplication of two ratios. (Contributed by Jim Kingdon, 25-Feb-2020.)
(((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐴 / 𝐶) · (𝐵 / 𝐷)) = ((𝐴 · 𝐵) / (𝐶 · 𝐷)))
 
Theoremdivdivdivap 8497 Division of two ratios. Theorem I.15 of [Apostol] p. 18. (Contributed by Jim Kingdon, 25-Feb-2020.)
(((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐴 / 𝐵) / (𝐶 / 𝐷)) = ((𝐴 · 𝐷) / (𝐵 · 𝐶)))
 
Theoremdivcanap5 8498 Cancellation of common factor in a ratio. (Contributed by Jim Kingdon, 25-Feb-2020.)
((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐶 · 𝐴) / (𝐶 · 𝐵)) = (𝐴 / 𝐵))
 
Theoremdivmul13ap 8499 Swap the denominators in the product of two ratios. (Contributed by Jim Kingdon, 26-Feb-2020.)
(((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐴 / 𝐶) · (𝐵 / 𝐷)) = ((𝐵 / 𝐶) · (𝐴 / 𝐷)))
 
Theoremdivmul24ap 8500 Swap the numerators in the product of two ratios. (Contributed by Jim Kingdon, 26-Feb-2020.)
(((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐴 / 𝐶) · (𝐵 / 𝐷)) = ((𝐴 / 𝐷) · (𝐵 / 𝐶)))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13441
  Copyright terms: Public domain < Previous  Next >