Theorem List for Intuitionistic Logic Explorer - 8401-8500 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | subne0ad 8401 |
If the difference of two complex numbers is nonzero, they are unequal.
Converse of subne0d 8399. Contrapositive of subeq0bd 8458. (Contributed
by David Moews, 28-Feb-2017.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (𝐴 − 𝐵) ≠ 0) ⇒ ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| |
| Theorem | neg11d 8402 |
If the difference between two numbers is zero, they are equal.
(Contributed by Mario Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → -𝐴 = -𝐵) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) |
| |
| Theorem | negdid 8403 |
Distribution of negative over addition. (Contributed by Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → -(𝐴 + 𝐵) = (-𝐴 + -𝐵)) |
| |
| Theorem | negdi2d 8404 |
Distribution of negative over addition. (Contributed by Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → -(𝐴 + 𝐵) = (-𝐴 − 𝐵)) |
| |
| Theorem | negsubdid 8405 |
Distribution of negative over subtraction. (Contributed by Mario
Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → -(𝐴 − 𝐵) = (-𝐴 + 𝐵)) |
| |
| Theorem | negsubdi2d 8406 |
Distribution of negative over subtraction. (Contributed by Mario
Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → -(𝐴 − 𝐵) = (𝐵 − 𝐴)) |
| |
| Theorem | neg2subd 8407 |
Relationship between subtraction and negative. (Contributed by Mario
Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (-𝐴 − -𝐵) = (𝐵 − 𝐴)) |
| |
| Theorem | subaddd 8408 |
Relationship between subtraction and addition. (Contributed by Mario
Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = 𝐴)) |
| |
| Theorem | subadd2d 8409 |
Relationship between subtraction and addition. (Contributed by Mario
Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) = 𝐶 ↔ (𝐶 + 𝐵) = 𝐴)) |
| |
| Theorem | addsubassd 8410 |
Associative-type law for subtraction and addition. (Contributed by
Mario Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) − 𝐶) = (𝐴 + (𝐵 − 𝐶))) |
| |
| Theorem | addsubd 8411 |
Law for subtraction and addition. (Contributed by Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) − 𝐶) = ((𝐴 − 𝐶) + 𝐵)) |
| |
| Theorem | subadd23d 8412 |
Commutative/associative law for addition and subtraction. (Contributed
by Mario Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) + 𝐶) = (𝐴 + (𝐶 − 𝐵))) |
| |
| Theorem | addsub12d 8413 |
Commutative/associative law for addition and subtraction. (Contributed
by Mario Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → (𝐴 + (𝐵 − 𝐶)) = (𝐵 + (𝐴 − 𝐶))) |
| |
| Theorem | npncand 8414 |
Cancellation law for subtraction. (Contributed by Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) + (𝐵 − 𝐶)) = (𝐴 − 𝐶)) |
| |
| Theorem | nppcand 8415 |
Cancellation law for subtraction. (Contributed by Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → (((𝐴 − 𝐵) + 𝐶) + 𝐵) = (𝐴 + 𝐶)) |
| |
| Theorem | nppcan2d 8416 |
Cancellation law for subtraction. (Contributed by Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 − (𝐵 + 𝐶)) + 𝐶) = (𝐴 − 𝐵)) |
| |
| Theorem | nppcan3d 8417 |
Cancellation law for subtraction. (Contributed by Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) + (𝐶 + 𝐵)) = (𝐴 + 𝐶)) |
| |
| Theorem | subsubd 8418 |
Law for double subtraction. (Contributed by Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → (𝐴 − (𝐵 − 𝐶)) = ((𝐴 − 𝐵) + 𝐶)) |
| |
| Theorem | subsub2d 8419 |
Law for double subtraction. (Contributed by Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → (𝐴 − (𝐵 − 𝐶)) = (𝐴 + (𝐶 − 𝐵))) |
| |
| Theorem | subsub3d 8420 |
Law for double subtraction. (Contributed by Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → (𝐴 − (𝐵 − 𝐶)) = ((𝐴 + 𝐶) − 𝐵)) |
| |
| Theorem | subsub4d 8421 |
Law for double subtraction. (Contributed by Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) − 𝐶) = (𝐴 − (𝐵 + 𝐶))) |
| |
| Theorem | sub32d 8422 |
Swap the second and third terms in a double subtraction. (Contributed
by Mario Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) − 𝐶) = ((𝐴 − 𝐶) − 𝐵)) |
| |
| Theorem | nnncand 8423 |
Cancellation law for subtraction. (Contributed by Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 − (𝐵 − 𝐶)) − 𝐶) = (𝐴 − 𝐵)) |
| |
| Theorem | nnncan1d 8424 |
Cancellation law for subtraction. (Contributed by Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) − (𝐴 − 𝐶)) = (𝐶 − 𝐵)) |
| |
| Theorem | nnncan2d 8425 |
Cancellation law for subtraction. (Contributed by Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 − 𝐶) − (𝐵 − 𝐶)) = (𝐴 − 𝐵)) |
| |
| Theorem | npncan3d 8426 |
Cancellation law for subtraction. (Contributed by Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) + (𝐶 − 𝐴)) = (𝐶 − 𝐵)) |
| |
| Theorem | pnpcand 8427 |
Cancellation law for mixed addition and subtraction. (Contributed by
Mario Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) − (𝐴 + 𝐶)) = (𝐵 − 𝐶)) |
| |
| Theorem | pnpcan2d 8428 |
Cancellation law for mixed addition and subtraction. (Contributed by
Mario Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 + 𝐶) − (𝐵 + 𝐶)) = (𝐴 − 𝐵)) |
| |
| Theorem | pnncand 8429 |
Cancellation law for mixed addition and subtraction. (Contributed by
Mario Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) − (𝐴 − 𝐶)) = (𝐵 + 𝐶)) |
| |
| Theorem | ppncand 8430 |
Cancellation law for mixed addition and subtraction. (Contributed by
Mario Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) + (𝐶 − 𝐵)) = (𝐴 + 𝐶)) |
| |
| Theorem | subcand 8431 |
Cancellation law for subtraction. (Contributed by Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐴 − 𝐶)) ⇒ ⊢ (𝜑 → 𝐵 = 𝐶) |
| |
| Theorem | subcan2d 8432 |
Cancellation law for subtraction. (Contributed by Mario Carneiro,
22-Sep-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → (𝐴 − 𝐶) = (𝐵 − 𝐶)) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) |
| |
| Theorem | subcanad 8433 |
Cancellation law for subtraction. Deduction form of subcan 8334.
Generalization of subcand 8431. (Contributed by David Moews,
28-Feb-2017.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) = (𝐴 − 𝐶) ↔ 𝐵 = 𝐶)) |
| |
| Theorem | subneintrd 8434 |
Introducing subtraction on both sides of a statement of inequality.
Contrapositive of subcand 8431. (Contributed by David Moews,
28-Feb-2017.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 𝐶) ⇒ ⊢ (𝜑 → (𝐴 − 𝐵) ≠ (𝐴 − 𝐶)) |
| |
| Theorem | subcan2ad 8435 |
Cancellation law for subtraction. Deduction form of subcan2 8304.
Generalization of subcan2d 8432. (Contributed by David Moews,
28-Feb-2017.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 − 𝐶) = (𝐵 − 𝐶) ↔ 𝐴 = 𝐵)) |
| |
| Theorem | subneintr2d 8436 |
Introducing subtraction on both sides of a statement of inequality.
Contrapositive of subcan2d 8432. (Contributed by David Moews,
28-Feb-2017.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) ⇒ ⊢ (𝜑 → (𝐴 − 𝐶) ≠ (𝐵 − 𝐶)) |
| |
| Theorem | addsub4d 8437 |
Rearrangement of 4 terms in a mixed addition and subtraction.
(Contributed by Mario Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) − (𝐶 + 𝐷)) = ((𝐴 − 𝐶) + (𝐵 − 𝐷))) |
| |
| Theorem | subadd4d 8438 |
Rearrangement of 4 terms in a mixed addition and subtraction.
(Contributed by Mario Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) − (𝐶 − 𝐷)) = ((𝐴 + 𝐷) − (𝐵 + 𝐶))) |
| |
| Theorem | sub4d 8439 |
Rearrangement of 4 terms in a subtraction. (Contributed by Mario
Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) − (𝐶 − 𝐷)) = ((𝐴 − 𝐶) − (𝐵 − 𝐷))) |
| |
| Theorem | 2addsubd 8440 |
Law for subtraction and addition. (Contributed by Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ)
⇒ ⊢ (𝜑 → (((𝐴 + 𝐵) + 𝐶) − 𝐷) = (((𝐴 + 𝐶) − 𝐷) + 𝐵)) |
| |
| Theorem | addsubeq4d 8441 |
Relation between sums and differences. (Contributed by Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) = (𝐶 + 𝐷) ↔ (𝐶 − 𝐴) = (𝐵 − 𝐷))) |
| |
| Theorem | subeqxfrd 8442 |
Transfer two terms of a subtraction in an equality. (Contributed by
Thierry Arnoux, 2-Feb-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐶 − 𝐷)) ⇒ ⊢ (𝜑 → (𝐴 − 𝐶) = (𝐵 − 𝐷)) |
| |
| Theorem | mvlraddd 8443 |
Move LHS right addition to RHS. (Contributed by David A. Wheeler,
15-Oct-2018.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (𝐴 + 𝐵) = 𝐶) ⇒ ⊢ (𝜑 → 𝐴 = (𝐶 − 𝐵)) |
| |
| Theorem | mvlladdd 8444 |
Move LHS left addition to RHS. (Contributed by David A. Wheeler,
15-Oct-2018.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (𝐴 + 𝐵) = 𝐶) ⇒ ⊢ (𝜑 → 𝐵 = (𝐶 − 𝐴)) |
| |
| Theorem | mvrraddd 8445 |
Move RHS right addition to LHS. (Contributed by David A. Wheeler,
15-Oct-2018.)
|
| ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐴 = (𝐵 + 𝐶)) ⇒ ⊢ (𝜑 → (𝐴 − 𝐶) = 𝐵) |
| |
| Theorem | mvrladdd 8446 |
Move RHS left addition to LHS. (Contributed by David A. Wheeler,
11-Oct-2018.)
|
| ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐴 = (𝐵 + 𝐶)) ⇒ ⊢ (𝜑 → (𝐴 − 𝐵) = 𝐶) |
| |
| Theorem | assraddsubd 8447 |
Associate RHS addition-subtraction. (Contributed by David A. Wheeler,
15-Oct-2018.)
|
| ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝐴 = ((𝐵 + 𝐶) − 𝐷)) ⇒ ⊢ (𝜑 → 𝐴 = (𝐵 + (𝐶 − 𝐷))) |
| |
| Theorem | subaddeqd 8448 |
Transfer two terms of a subtraction to an addition in an equality.
(Contributed by Thierry Arnoux, 2-Feb-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → (𝐴 + 𝐵) = (𝐶 + 𝐷)) ⇒ ⊢ (𝜑 → (𝐴 − 𝐷) = (𝐶 − 𝐵)) |
| |
| Theorem | addlsub 8449 |
Left-subtraction: Subtraction of the left summand from the result of an
addition. (Contributed by BJ, 6-Jun-2019.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) = 𝐶 ↔ 𝐴 = (𝐶 − 𝐵))) |
| |
| Theorem | addrsub 8450 |
Right-subtraction: Subtraction of the right summand from the result of
an addition. (Contributed by BJ, 6-Jun-2019.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) = 𝐶 ↔ 𝐵 = (𝐶 − 𝐴))) |
| |
| Theorem | subexsub 8451 |
A subtraction law: Exchanging the subtrahend and the result of the
subtraction. (Contributed by BJ, 6-Jun-2019.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → (𝐴 = (𝐶 − 𝐵) ↔ 𝐵 = (𝐶 − 𝐴))) |
| |
| Theorem | addid0 8452 |
If adding a number to a another number yields the other number, the added
number must be 0. This shows that 0 is the unique (right)
identity of the complex numbers. (Contributed by AV, 17-Jan-2021.)
|
| ⊢ ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → ((𝑋 + 𝑌) = 𝑋 ↔ 𝑌 = 0)) |
| |
| Theorem | addn0nid 8453 |
Adding a nonzero number to a complex number does not yield the complex
number. (Contributed by AV, 17-Jan-2021.)
|
| ⊢ ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ ∧ 𝑌 ≠ 0) → (𝑋 + 𝑌) ≠ 𝑋) |
| |
| Theorem | pnpncand 8454 |
Addition/subtraction cancellation law. (Contributed by Scott Fenton,
14-Dec-2017.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 + (𝐵 − 𝐶)) + (𝐶 − 𝐵)) = 𝐴) |
| |
| Theorem | subeqrev 8455 |
Reverse the order of subtraction in an equality. (Contributed by Scott
Fenton, 8-Jul-2013.)
|
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 − 𝐵) = (𝐶 − 𝐷) ↔ (𝐵 − 𝐴) = (𝐷 − 𝐶))) |
| |
| Theorem | pncan1 8456 |
Cancellation law for addition and subtraction with 1. (Contributed by
Alexander van der Vekens, 3-Oct-2018.)
|
| ⊢ (𝐴 ∈ ℂ → ((𝐴 + 1) − 1) = 𝐴) |
| |
| Theorem | npcan1 8457 |
Cancellation law for subtraction and addition with 1. (Contributed by
Alexander van der Vekens, 5-Oct-2018.)
|
| ⊢ (𝐴 ∈ ℂ → ((𝐴 − 1) + 1) = 𝐴) |
| |
| Theorem | subeq0bd 8458 |
If two complex numbers are equal, their difference is zero. Consequence
of subeq0ad 8400. Converse of subeq0d 8398. Contrapositive of subne0ad 8401.
(Contributed by David Moews, 28-Feb-2017.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐴 − 𝐵) = 0) |
| |
| Theorem | renegcld 8459 |
Closure law for negative of reals. (Contributed by Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ)
⇒ ⊢ (𝜑 → -𝐴 ∈ ℝ) |
| |
| Theorem | resubcld 8460 |
Closure law for subtraction of reals. (Contributed by Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ)
⇒ ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℝ) |
| |
| Theorem | negf1o 8461* |
Negation is an isomorphism of a subset of the real numbers to the
negated elements of the subset. (Contributed by AV, 9-Aug-2020.)
|
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ -𝑥) ⇒ ⊢ (𝐴 ⊆ ℝ → 𝐹:𝐴–1-1-onto→{𝑛 ∈ ℝ ∣ -𝑛 ∈ 𝐴}) |
| |
| 4.3.3 Multiplication
|
| |
| Theorem | kcnktkm1cn 8462 |
k times k minus 1 is a complex number if k is a complex number.
(Contributed by Alexander van der Vekens, 11-Mar-2018.)
|
| ⊢ (𝐾 ∈ ℂ → (𝐾 · (𝐾 − 1)) ∈
ℂ) |
| |
| Theorem | muladd 8463 |
Product of two sums. (Contributed by NM, 14-Jan-2006.) (Proof shortened
by Andrew Salmon, 19-Nov-2011.)
|
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) · (𝐶 + 𝐷)) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) + ((𝐴 · 𝐷) + (𝐶 · 𝐵)))) |
| |
| Theorem | subdi 8464 |
Distribution of multiplication over subtraction. Theorem I.5 of [Apostol]
p. 18. (Contributed by NM, 18-Nov-2004.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 − 𝐶)) = ((𝐴 · 𝐵) − (𝐴 · 𝐶))) |
| |
| Theorem | subdir 8465 |
Distribution of multiplication over subtraction. Theorem I.5 of [Apostol]
p. 18. (Contributed by NM, 30-Dec-2005.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐵) · 𝐶) = ((𝐴 · 𝐶) − (𝐵 · 𝐶))) |
| |
| Theorem | mul02 8466 |
Multiplication by 0. Theorem I.6 of [Apostol] p. 18. (Contributed
by NM, 10-Aug-1999.)
|
| ⊢ (𝐴 ∈ ℂ → (0 · 𝐴) = 0) |
| |
| Theorem | mul02lem2 8467 |
Zero times a real is zero. Although we prove it as a corollary of
mul02 8466, the name is for consistency with the
Metamath Proof Explorer
which proves it before mul02 8466. (Contributed by Scott Fenton,
3-Jan-2013.)
|
| ⊢ (𝐴 ∈ ℝ → (0 · 𝐴) = 0) |
| |
| Theorem | mul01 8468 |
Multiplication by 0. Theorem I.6 of [Apostol] p. 18. (Contributed
by NM, 15-May-1999.) (Revised by Scott Fenton, 3-Jan-2013.)
|
| ⊢ (𝐴 ∈ ℂ → (𝐴 · 0) = 0) |
| |
| Theorem | mul02i 8469 |
Multiplication by 0. Theorem I.6 of [Apostol]
p. 18. (Contributed by
NM, 23-Nov-1994.)
|
| ⊢ 𝐴 ∈ ℂ
⇒ ⊢ (0 · 𝐴) = 0 |
| |
| Theorem | mul01i 8470 |
Multiplication by 0. Theorem I.6 of [Apostol] p. 18. (Contributed
by NM, 23-Nov-1994.) (Revised by Scott Fenton, 3-Jan-2013.)
|
| ⊢ 𝐴 ∈ ℂ
⇒ ⊢ (𝐴 · 0) = 0 |
| |
| Theorem | mul02d 8471 |
Multiplication by 0. Theorem I.6 of [Apostol]
p. 18. (Contributed by
Mario Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → (0 · 𝐴) = 0) |
| |
| Theorem | mul01d 8472 |
Multiplication by 0. Theorem I.6 of [Apostol] p. 18. (Contributed
by Mario Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → (𝐴 · 0) = 0) |
| |
| Theorem | ine0 8473 |
The imaginary unit i is not zero. (Contributed by NM,
6-May-1999.)
|
| ⊢ i ≠ 0 |
| |
| Theorem | mulneg1 8474 |
Product with negative is negative of product. Theorem I.12 of [Apostol]
p. 18. (Contributed by NM, 14-May-1999.) (Proof shortened by Mario
Carneiro, 27-May-2016.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 · 𝐵) = -(𝐴 · 𝐵)) |
| |
| Theorem | mulneg2 8475 |
The product with a negative is the negative of the product. (Contributed
by NM, 30-Jul-2004.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · -𝐵) = -(𝐴 · 𝐵)) |
| |
| Theorem | mulneg12 8476 |
Swap the negative sign in a product. (Contributed by NM, 30-Jul-2004.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 · 𝐵) = (𝐴 · -𝐵)) |
| |
| Theorem | mul2neg 8477 |
Product of two negatives. Theorem I.12 of [Apostol] p. 18. (Contributed
by NM, 30-Jul-2004.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 · -𝐵) = (𝐴 · 𝐵)) |
| |
| Theorem | submul2 8478 |
Convert a subtraction to addition using multiplication by a negative.
(Contributed by NM, 2-Feb-2007.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 − (𝐵 · 𝐶)) = (𝐴 + (𝐵 · -𝐶))) |
| |
| Theorem | mulm1 8479 |
Product with minus one is negative. (Contributed by NM, 16-Nov-1999.)
|
| ⊢ (𝐴 ∈ ℂ → (-1 · 𝐴) = -𝐴) |
| |
| Theorem | mulsub 8480 |
Product of two differences. (Contributed by NM, 14-Jan-2006.)
|
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 − 𝐵) · (𝐶 − 𝐷)) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) − ((𝐴 · 𝐷) + (𝐶 · 𝐵)))) |
| |
| Theorem | mulsub2 8481 |
Swap the order of subtraction in a multiplication. (Contributed by Scott
Fenton, 24-Jun-2013.)
|
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 − 𝐵) · (𝐶 − 𝐷)) = ((𝐵 − 𝐴) · (𝐷 − 𝐶))) |
| |
| Theorem | mulm1i 8482 |
Product with minus one is negative. (Contributed by NM,
31-Jul-1999.)
|
| ⊢ 𝐴 ∈ ℂ
⇒ ⊢ (-1 · 𝐴) = -𝐴 |
| |
| Theorem | mulneg1i 8483 |
Product with negative is negative of product. Theorem I.12 of [Apostol]
p. 18. (Contributed by NM, 10-Feb-1995.) (Revised by Mario Carneiro,
27-May-2016.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈
ℂ ⇒ ⊢ (-𝐴 · 𝐵) = -(𝐴 · 𝐵) |
| |
| Theorem | mulneg2i 8484 |
Product with negative is negative of product. (Contributed by NM,
31-Jul-1999.) (Revised by Mario Carneiro, 27-May-2016.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈
ℂ ⇒ ⊢ (𝐴 · -𝐵) = -(𝐴 · 𝐵) |
| |
| Theorem | mul2negi 8485 |
Product of two negatives. Theorem I.12 of [Apostol] p. 18.
(Contributed by NM, 14-Feb-1995.) (Revised by Mario Carneiro,
27-May-2016.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈
ℂ ⇒ ⊢ (-𝐴 · -𝐵) = (𝐴 · 𝐵) |
| |
| Theorem | subdii 8486 |
Distribution of multiplication over subtraction. Theorem I.5 of
[Apostol] p. 18. (Contributed by NM,
26-Nov-1994.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈
ℂ ⇒ ⊢ (𝐴 · (𝐵 − 𝐶)) = ((𝐴 · 𝐵) − (𝐴 · 𝐶)) |
| |
| Theorem | subdiri 8487 |
Distribution of multiplication over subtraction. Theorem I.5 of
[Apostol] p. 18. (Contributed by NM,
8-May-1999.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈
ℂ ⇒ ⊢ ((𝐴 − 𝐵) · 𝐶) = ((𝐴 · 𝐶) − (𝐵 · 𝐶)) |
| |
| Theorem | muladdi 8488 |
Product of two sums. (Contributed by NM, 17-May-1999.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐷 ∈
ℂ ⇒ ⊢ ((𝐴 + 𝐵) · (𝐶 + 𝐷)) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) + ((𝐴 · 𝐷) + (𝐶 · 𝐵))) |
| |
| Theorem | mulm1d 8489 |
Product with minus one is negative. (Contributed by Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → (-1 · 𝐴) = -𝐴) |
| |
| Theorem | mulneg1d 8490 |
Product with negative is negative of product. Theorem I.12 of [Apostol]
p. 18. (Contributed by Mario Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (-𝐴 · 𝐵) = -(𝐴 · 𝐵)) |
| |
| Theorem | mulneg2d 8491 |
Product with negative is negative of product. (Contributed by Mario
Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (𝐴 · -𝐵) = -(𝐴 · 𝐵)) |
| |
| Theorem | mul2negd 8492 |
Product of two negatives. Theorem I.12 of [Apostol] p. 18.
(Contributed by Mario Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (-𝐴 · -𝐵) = (𝐴 · 𝐵)) |
| |
| Theorem | subdid 8493 |
Distribution of multiplication over subtraction. Theorem I.5 of
[Apostol] p. 18. (Contributed by Mario
Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → (𝐴 · (𝐵 − 𝐶)) = ((𝐴 · 𝐵) − (𝐴 · 𝐶))) |
| |
| Theorem | subdird 8494 |
Distribution of multiplication over subtraction. Theorem I.5 of
[Apostol] p. 18. (Contributed by Mario
Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) · 𝐶) = ((𝐴 · 𝐶) − (𝐵 · 𝐶))) |
| |
| Theorem | muladdd 8495 |
Product of two sums. (Contributed by Mario Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) · (𝐶 + 𝐷)) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) + ((𝐴 · 𝐷) + (𝐶 · 𝐵)))) |
| |
| Theorem | mulsubd 8496 |
Product of two differences. (Contributed by Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) · (𝐶 − 𝐷)) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) − ((𝐴 · 𝐷) + (𝐶 · 𝐵)))) |
| |
| Theorem | muls1d 8497 |
Multiplication by one minus a number. (Contributed by Scott Fenton,
23-Dec-2017.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (𝐴 · (𝐵 − 1)) = ((𝐴 · 𝐵) − 𝐴)) |
| |
| Theorem | mulsubfacd 8498 |
Multiplication followed by the subtraction of a factor. (Contributed by
Alexander van der Vekens, 28-Aug-2018.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 · 𝐵) − 𝐵) = ((𝐴 − 1) · 𝐵)) |
| |
| 4.3.4 Ordering on reals (cont.)
|
| |
| Theorem | ltadd2 8499 |
Addition to both sides of 'less than'. (Contributed by NM,
12-Nov-1999.) (Revised by Mario Carneiro, 27-May-2016.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐶 + 𝐴) < (𝐶 + 𝐵))) |
| |
| Theorem | ltadd2i 8500 |
Addition to both sides of 'less than'. (Contributed by NM,
21-Jan-1997.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈
ℝ ⇒ ⊢ (𝐴 < 𝐵 ↔ (𝐶 + 𝐴) < (𝐶 + 𝐵)) |