Theorem List for Intuitionistic Logic Explorer - 8401-8500 *Has distinct variable
group(s)
Type | Label | Description |
Statement |
|
Theorem | ltordlem 8401* |
Lemma for eqord1 8402. (Contributed by Mario Carneiro,
14-Jun-2014.)
|
⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵)
& ⊢ (𝑥 = 𝐶 → 𝐴 = 𝑀)
& ⊢ (𝑥 = 𝐷 → 𝐴 = 𝑁)
& ⊢ 𝑆 ⊆ ℝ & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 < 𝑦 → 𝐴 < 𝐵)) ⇒ ⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (𝐶 < 𝐷 → 𝑀 < 𝑁)) |
|
Theorem | eqord1 8402* |
A strictly increasing real function on a subset of ℝ is
one-to-one. (Contributed by Mario Carneiro, 14-Jun-2014.) (Revised
by Jim Kingdon, 20-Dec-2022.)
|
⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵)
& ⊢ (𝑥 = 𝐶 → 𝐴 = 𝑀)
& ⊢ (𝑥 = 𝐷 → 𝐴 = 𝑁)
& ⊢ 𝑆 ⊆ ℝ & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 < 𝑦 → 𝐴 < 𝐵)) ⇒ ⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (𝐶 = 𝐷 ↔ 𝑀 = 𝑁)) |
|
Theorem | eqord2 8403* |
A strictly decreasing real function on a subset of ℝ is one-to-one.
(Contributed by Mario Carneiro, 14-Jun-2014.)
|
⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵)
& ⊢ (𝑥 = 𝐶 → 𝐴 = 𝑀)
& ⊢ (𝑥 = 𝐷 → 𝐴 = 𝑁)
& ⊢ 𝑆 ⊆ ℝ & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 < 𝑦 → 𝐵 < 𝐴)) ⇒ ⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (𝐶 = 𝐷 ↔ 𝑀 = 𝑁)) |
|
Theorem | leidi 8404 |
'Less than or equal to' is reflexive. (Contributed by NM,
18-Aug-1999.)
|
⊢ 𝐴 ∈ ℝ
⇒ ⊢ 𝐴 ≤ 𝐴 |
|
Theorem | gt0ne0i 8405 |
Positive means nonzero (useful for ordering theorems involving
division). (Contributed by NM, 16-Sep-1999.)
|
⊢ 𝐴 ∈ ℝ
⇒ ⊢ (0 < 𝐴 → 𝐴 ≠ 0) |
|
Theorem | gt0ne0ii 8406 |
Positive implies nonzero. (Contributed by NM, 15-May-1999.)
|
⊢ 𝐴 ∈ ℝ & ⊢ 0 < 𝐴 ⇒ ⊢ 𝐴 ≠ 0 |
|
Theorem | addgt0i 8407 |
Addition of 2 positive numbers is positive. (Contributed by NM,
16-May-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
|
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈
ℝ ⇒ ⊢ ((0 < 𝐴 ∧ 0 < 𝐵) → 0 < (𝐴 + 𝐵)) |
|
Theorem | addge0i 8408 |
Addition of 2 nonnegative numbers is nonnegative. (Contributed by NM,
28-May-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
|
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈
ℝ ⇒ ⊢ ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → 0 ≤ (𝐴 + 𝐵)) |
|
Theorem | addgegt0i 8409 |
Addition of nonnegative and positive numbers is positive. (Contributed
by NM, 25-Sep-1999.) (Revised by Mario Carneiro, 27-May-2016.)
|
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈
ℝ ⇒ ⊢ ((0 ≤ 𝐴 ∧ 0 < 𝐵) → 0 < (𝐴 + 𝐵)) |
|
Theorem | addgt0ii 8410 |
Addition of 2 positive numbers is positive. (Contributed by NM,
18-May-1999.)
|
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 0 < 𝐴 & ⊢ 0 < 𝐵 ⇒ ⊢ 0 < (𝐴 + 𝐵) |
|
Theorem | add20i 8411 |
Two nonnegative numbers are zero iff their sum is zero. (Contributed by
NM, 28-Jul-1999.)
|
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈
ℝ ⇒ ⊢ ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → ((𝐴 + 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0))) |
|
Theorem | ltnegi 8412 |
Negative of both sides of 'less than'. Theorem I.23 of [Apostol] p. 20.
(Contributed by NM, 21-Jan-1997.)
|
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈
ℝ ⇒ ⊢ (𝐴 < 𝐵 ↔ -𝐵 < -𝐴) |
|
Theorem | lenegi 8413 |
Negative of both sides of 'less than or equal to'. (Contributed by NM,
1-Aug-1999.)
|
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈
ℝ ⇒ ⊢ (𝐴 ≤ 𝐵 ↔ -𝐵 ≤ -𝐴) |
|
Theorem | ltnegcon2i 8414 |
Contraposition of negative in 'less than'. (Contributed by NM,
14-May-1999.)
|
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈
ℝ ⇒ ⊢ (𝐴 < -𝐵 ↔ 𝐵 < -𝐴) |
|
Theorem | lesub0i 8415 |
Lemma to show a nonnegative number is zero. (Contributed by NM,
8-Oct-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
|
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈
ℝ ⇒ ⊢ ((0 ≤ 𝐴 ∧ 𝐵 ≤ (𝐵 − 𝐴)) ↔ 𝐴 = 0) |
|
Theorem | ltaddposi 8416 |
Adding a positive number to another number increases it. (Contributed
by NM, 25-Aug-1999.)
|
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈
ℝ ⇒ ⊢ (0 < 𝐴 ↔ 𝐵 < (𝐵 + 𝐴)) |
|
Theorem | posdifi 8417 |
Comparison of two numbers whose difference is positive. (Contributed by
NM, 19-Aug-2001.)
|
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈
ℝ ⇒ ⊢ (𝐴 < 𝐵 ↔ 0 < (𝐵 − 𝐴)) |
|
Theorem | ltnegcon1i 8418 |
Contraposition of negative in 'less than'. (Contributed by NM,
14-May-1999.)
|
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈
ℝ ⇒ ⊢ (-𝐴 < 𝐵 ↔ -𝐵 < 𝐴) |
|
Theorem | lenegcon1i 8419 |
Contraposition of negative in 'less than or equal to'. (Contributed by
NM, 6-Apr-2005.)
|
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈
ℝ ⇒ ⊢ (-𝐴 ≤ 𝐵 ↔ -𝐵 ≤ 𝐴) |
|
Theorem | subge0i 8420 |
Nonnegative subtraction. (Contributed by NM, 13-Aug-2000.)
|
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈
ℝ ⇒ ⊢ (0 ≤ (𝐴 − 𝐵) ↔ 𝐵 ≤ 𝐴) |
|
Theorem | ltadd1i 8421 |
Addition to both sides of 'less than'. Theorem I.18 of [Apostol] p. 20.
(Contributed by NM, 21-Jan-1997.)
|
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈
ℝ ⇒ ⊢ (𝐴 < 𝐵 ↔ (𝐴 + 𝐶) < (𝐵 + 𝐶)) |
|
Theorem | leadd1i 8422 |
Addition to both sides of 'less than or equal to'. (Contributed by NM,
11-Aug-1999.)
|
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈
ℝ ⇒ ⊢ (𝐴 ≤ 𝐵 ↔ (𝐴 + 𝐶) ≤ (𝐵 + 𝐶)) |
|
Theorem | leadd2i 8423 |
Addition to both sides of 'less than or equal to'. (Contributed by NM,
11-Aug-1999.)
|
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈
ℝ ⇒ ⊢ (𝐴 ≤ 𝐵 ↔ (𝐶 + 𝐴) ≤ (𝐶 + 𝐵)) |
|
Theorem | ltsubaddi 8424 |
'Less than' relationship between subtraction and addition. (Contributed
by NM, 21-Jan-1997.) (Proof shortened by Andrew Salmon,
19-Nov-2011.)
|
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈
ℝ ⇒ ⊢ ((𝐴 − 𝐵) < 𝐶 ↔ 𝐴 < (𝐶 + 𝐵)) |
|
Theorem | lesubaddi 8425 |
'Less than or equal to' relationship between subtraction and addition.
(Contributed by NM, 30-Sep-1999.) (Proof shortened by Andrew Salmon,
19-Nov-2011.)
|
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈
ℝ ⇒ ⊢ ((𝐴 − 𝐵) ≤ 𝐶 ↔ 𝐴 ≤ (𝐶 + 𝐵)) |
|
Theorem | ltsubadd2i 8426 |
'Less than' relationship between subtraction and addition. (Contributed
by NM, 21-Jan-1997.)
|
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈
ℝ ⇒ ⊢ ((𝐴 − 𝐵) < 𝐶 ↔ 𝐴 < (𝐵 + 𝐶)) |
|
Theorem | lesubadd2i 8427 |
'Less than or equal to' relationship between subtraction and addition.
(Contributed by NM, 3-Aug-1999.)
|
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈
ℝ ⇒ ⊢ ((𝐴 − 𝐵) ≤ 𝐶 ↔ 𝐴 ≤ (𝐵 + 𝐶)) |
|
Theorem | ltaddsubi 8428 |
'Less than' relationship between subtraction and addition. (Contributed
by NM, 14-May-1999.)
|
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈
ℝ ⇒ ⊢ ((𝐴 + 𝐵) < 𝐶 ↔ 𝐴 < (𝐶 − 𝐵)) |
|
Theorem | lt2addi 8429 |
Adding both side of two inequalities. Theorem I.25 of [Apostol] p. 20.
(Contributed by NM, 14-May-1999.)
|
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈ ℝ & ⊢ 𝐷 ∈
ℝ ⇒ ⊢ ((𝐴 < 𝐶 ∧ 𝐵 < 𝐷) → (𝐴 + 𝐵) < (𝐶 + 𝐷)) |
|
Theorem | le2addi 8430 |
Adding both side of two inequalities. (Contributed by NM,
16-Sep-1999.)
|
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈ ℝ & ⊢ 𝐷 ∈
ℝ ⇒ ⊢ ((𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐷) → (𝐴 + 𝐵) ≤ (𝐶 + 𝐷)) |
|
Theorem | gt0ne0d 8431 |
Positive implies nonzero. (Contributed by Mario Carneiro,
27-May-2016.)
|
⊢ (𝜑 → 0 < 𝐴) ⇒ ⊢ (𝜑 → 𝐴 ≠ 0) |
|
Theorem | lt0ne0d 8432 |
Something less than zero is not zero. Deduction form. See also
lt0ap0d 8568 which is similar but for apartness.
(Contributed by David
Moews, 28-Feb-2017.)
|
⊢ (𝜑 → 𝐴 < 0) ⇒ ⊢ (𝜑 → 𝐴 ≠ 0) |
|
Theorem | leidd 8433 |
'Less than or equal to' is reflexive. (Contributed by Mario Carneiro,
27-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ)
⇒ ⊢ (𝜑 → 𝐴 ≤ 𝐴) |
|
Theorem | lt0neg1d 8434 |
Comparison of a number and its negative to zero. Theorem I.23 of
[Apostol] p. 20. (Contributed by Mario
Carneiro, 27-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ)
⇒ ⊢ (𝜑 → (𝐴 < 0 ↔ 0 < -𝐴)) |
|
Theorem | lt0neg2d 8435 |
Comparison of a number and its negative to zero. (Contributed by Mario
Carneiro, 27-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ)
⇒ ⊢ (𝜑 → (0 < 𝐴 ↔ -𝐴 < 0)) |
|
Theorem | le0neg1d 8436 |
Comparison of a number and its negative to zero. (Contributed by Mario
Carneiro, 27-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ)
⇒ ⊢ (𝜑 → (𝐴 ≤ 0 ↔ 0 ≤ -𝐴)) |
|
Theorem | le0neg2d 8437 |
Comparison of a number and its negative to zero. (Contributed by Mario
Carneiro, 27-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ)
⇒ ⊢ (𝜑 → (0 ≤ 𝐴 ↔ -𝐴 ≤ 0)) |
|
Theorem | addgegt0d 8438 |
Addition of nonnegative and positive numbers is positive.
(Contributed by Mario Carneiro, 27-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴)
& ⊢ (𝜑 → 0 < 𝐵) ⇒ ⊢ (𝜑 → 0 < (𝐴 + 𝐵)) |
|
Theorem | addgtge0d 8439 |
Addition of positive and nonnegative numbers is positive.
(Contributed by Asger C. Ipsen, 12-May-2021.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 < 𝐴)
& ⊢ (𝜑 → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → 0 < (𝐴 + 𝐵)) |
|
Theorem | addgt0d 8440 |
Addition of 2 positive numbers is positive. (Contributed by Mario
Carneiro, 27-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 < 𝐴)
& ⊢ (𝜑 → 0 < 𝐵) ⇒ ⊢ (𝜑 → 0 < (𝐴 + 𝐵)) |
|
Theorem | addge0d 8441 |
Addition of 2 nonnegative numbers is nonnegative. (Contributed by
Mario Carneiro, 27-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴)
& ⊢ (𝜑 → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → 0 ≤ (𝐴 + 𝐵)) |
|
Theorem | ltnegd 8442 |
Negative of both sides of 'less than'. Theorem I.23 of [Apostol] p. 20.
(Contributed by Mario Carneiro, 27-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ)
⇒ ⊢ (𝜑 → (𝐴 < 𝐵 ↔ -𝐵 < -𝐴)) |
|
Theorem | lenegd 8443 |
Negative of both sides of 'less than or equal to'. (Contributed by
Mario Carneiro, 27-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ)
⇒ ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ -𝐵 ≤ -𝐴)) |
|
Theorem | ltnegcon1d 8444 |
Contraposition of negative in 'less than'. (Contributed by Mario
Carneiro, 27-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → -𝐴 < 𝐵) ⇒ ⊢ (𝜑 → -𝐵 < 𝐴) |
|
Theorem | ltnegcon2d 8445 |
Contraposition of negative in 'less than'. (Contributed by Mario
Carneiro, 27-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < -𝐵) ⇒ ⊢ (𝜑 → 𝐵 < -𝐴) |
|
Theorem | lenegcon1d 8446 |
Contraposition of negative in 'less than or equal to'. (Contributed
by Mario Carneiro, 27-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → -𝐴 ≤ 𝐵) ⇒ ⊢ (𝜑 → -𝐵 ≤ 𝐴) |
|
Theorem | lenegcon2d 8447 |
Contraposition of negative in 'less than or equal to'. (Contributed
by Mario Carneiro, 27-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ -𝐵) ⇒ ⊢ (𝜑 → 𝐵 ≤ -𝐴) |
|
Theorem | ltaddposd 8448 |
Adding a positive number to another number increases it. (Contributed
by Mario Carneiro, 27-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ)
⇒ ⊢ (𝜑 → (0 < 𝐴 ↔ 𝐵 < (𝐵 + 𝐴))) |
|
Theorem | ltaddpos2d 8449 |
Adding a positive number to another number increases it. (Contributed
by Mario Carneiro, 27-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ)
⇒ ⊢ (𝜑 → (0 < 𝐴 ↔ 𝐵 < (𝐴 + 𝐵))) |
|
Theorem | ltsubposd 8450 |
Subtracting a positive number from another number decreases it.
(Contributed by Mario Carneiro, 27-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ)
⇒ ⊢ (𝜑 → (0 < 𝐴 ↔ (𝐵 − 𝐴) < 𝐵)) |
|
Theorem | posdifd 8451 |
Comparison of two numbers whose difference is positive. (Contributed by
Mario Carneiro, 27-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ)
⇒ ⊢ (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵 − 𝐴))) |
|
Theorem | addge01d 8452 |
A number is less than or equal to itself plus a nonnegative number.
(Contributed by Mario Carneiro, 27-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ)
⇒ ⊢ (𝜑 → (0 ≤ 𝐵 ↔ 𝐴 ≤ (𝐴 + 𝐵))) |
|
Theorem | addge02d 8453 |
A number is less than or equal to itself plus a nonnegative number.
(Contributed by Mario Carneiro, 27-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ)
⇒ ⊢ (𝜑 → (0 ≤ 𝐵 ↔ 𝐴 ≤ (𝐵 + 𝐴))) |
|
Theorem | subge0d 8454 |
Nonnegative subtraction. (Contributed by Mario Carneiro,
27-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ)
⇒ ⊢ (𝜑 → (0 ≤ (𝐴 − 𝐵) ↔ 𝐵 ≤ 𝐴)) |
|
Theorem | suble0d 8455 |
Nonpositive subtraction. (Contributed by Mario Carneiro,
27-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ)
⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) ≤ 0 ↔ 𝐴 ≤ 𝐵)) |
|
Theorem | subge02d 8456 |
Nonnegative subtraction. (Contributed by Mario Carneiro,
27-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ)
⇒ ⊢ (𝜑 → (0 ≤ 𝐵 ↔ (𝐴 − 𝐵) ≤ 𝐴)) |
|
Theorem | ltadd1d 8457 |
Addition to both sides of 'less than'. Theorem I.18 of [Apostol] p. 20.
(Contributed by Mario Carneiro, 27-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ)
⇒ ⊢ (𝜑 → (𝐴 < 𝐵 ↔ (𝐴 + 𝐶) < (𝐵 + 𝐶))) |
|
Theorem | leadd1d 8458 |
Addition to both sides of 'less than or equal to'. (Contributed by
Mario Carneiro, 27-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ)
⇒ ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ (𝐴 + 𝐶) ≤ (𝐵 + 𝐶))) |
|
Theorem | leadd2d 8459 |
Addition to both sides of 'less than or equal to'. (Contributed by
Mario Carneiro, 27-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ)
⇒ ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ (𝐶 + 𝐴) ≤ (𝐶 + 𝐵))) |
|
Theorem | ltsubaddd 8460 |
'Less than' relationship between subtraction and addition. (Contributed
by Mario Carneiro, 27-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ)
⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) < 𝐶 ↔ 𝐴 < (𝐶 + 𝐵))) |
|
Theorem | lesubaddd 8461 |
'Less than or equal to' relationship between subtraction and addition.
(Contributed by Mario Carneiro, 27-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ)
⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) ≤ 𝐶 ↔ 𝐴 ≤ (𝐶 + 𝐵))) |
|
Theorem | ltsubadd2d 8462 |
'Less than' relationship between subtraction and addition. (Contributed
by Mario Carneiro, 27-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ)
⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) < 𝐶 ↔ 𝐴 < (𝐵 + 𝐶))) |
|
Theorem | lesubadd2d 8463 |
'Less than or equal to' relationship between subtraction and addition.
(Contributed by Mario Carneiro, 27-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ)
⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) ≤ 𝐶 ↔ 𝐴 ≤ (𝐵 + 𝐶))) |
|
Theorem | ltaddsubd 8464 |
'Less than' relationship between subtraction and addition. (Contributed
by Mario Carneiro, 27-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ)
⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) < 𝐶 ↔ 𝐴 < (𝐶 − 𝐵))) |
|
Theorem | ltaddsub2d 8465 |
'Less than' relationship between subtraction and addition. (Contributed
by Mario Carneiro, 29-Dec-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ)
⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) < 𝐶 ↔ 𝐵 < (𝐶 − 𝐴))) |
|
Theorem | leaddsub2d 8466 |
'Less than or equal to' relationship between and addition and
subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ)
⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) ≤ 𝐶 ↔ 𝐵 ≤ (𝐶 − 𝐴))) |
|
Theorem | subled 8467 |
Swap subtrahends in an inequality. (Contributed by Mario Carneiro,
27-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → (𝐴 − 𝐵) ≤ 𝐶) ⇒ ⊢ (𝜑 → (𝐴 − 𝐶) ≤ 𝐵) |
|
Theorem | lesubd 8468 |
Swap subtrahends in an inequality. (Contributed by Mario Carneiro,
27-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ (𝐵 − 𝐶)) ⇒ ⊢ (𝜑 → 𝐶 ≤ (𝐵 − 𝐴)) |
|
Theorem | ltsub23d 8469 |
'Less than' relationship between subtraction and addition.
(Contributed by Mario Carneiro, 27-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → (𝐴 − 𝐵) < 𝐶) ⇒ ⊢ (𝜑 → (𝐴 − 𝐶) < 𝐵) |
|
Theorem | ltsub13d 8470 |
'Less than' relationship between subtraction and addition.
(Contributed by Mario Carneiro, 27-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < (𝐵 − 𝐶)) ⇒ ⊢ (𝜑 → 𝐶 < (𝐵 − 𝐴)) |
|
Theorem | lesub1d 8471 |
Subtraction from both sides of 'less than or equal to'. (Contributed by
Mario Carneiro, 27-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ)
⇒ ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ (𝐴 − 𝐶) ≤ (𝐵 − 𝐶))) |
|
Theorem | lesub2d 8472 |
Subtraction of both sides of 'less than or equal to'. (Contributed by
Mario Carneiro, 27-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ)
⇒ ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ (𝐶 − 𝐵) ≤ (𝐶 − 𝐴))) |
|
Theorem | ltsub1d 8473 |
Subtraction from both sides of 'less than'. (Contributed by Mario
Carneiro, 27-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ)
⇒ ⊢ (𝜑 → (𝐴 < 𝐵 ↔ (𝐴 − 𝐶) < (𝐵 − 𝐶))) |
|
Theorem | ltsub2d 8474 |
Subtraction of both sides of 'less than'. (Contributed by Mario
Carneiro, 27-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ)
⇒ ⊢ (𝜑 → (𝐴 < 𝐵 ↔ (𝐶 − 𝐵) < (𝐶 − 𝐴))) |
|
Theorem | ltadd1dd 8475 |
Addition to both sides of 'less than'. Theorem I.18 of [Apostol]
p. 20. (Contributed by Mario Carneiro, 30-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → (𝐴 + 𝐶) < (𝐵 + 𝐶)) |
|
Theorem | ltsub1dd 8476 |
Subtraction from both sides of 'less than'. (Contributed by Mario
Carneiro, 30-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → (𝐴 − 𝐶) < (𝐵 − 𝐶)) |
|
Theorem | ltsub2dd 8477 |
Subtraction of both sides of 'less than'. (Contributed by Mario
Carneiro, 30-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → (𝐶 − 𝐵) < (𝐶 − 𝐴)) |
|
Theorem | leadd1dd 8478 |
Addition to both sides of 'less than or equal to'. (Contributed by
Mario Carneiro, 30-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝐴 + 𝐶) ≤ (𝐵 + 𝐶)) |
|
Theorem | leadd2dd 8479 |
Addition to both sides of 'less than or equal to'. (Contributed by
Mario Carneiro, 30-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝐶 + 𝐴) ≤ (𝐶 + 𝐵)) |
|
Theorem | lesub1dd 8480 |
Subtraction from both sides of 'less than or equal to'. (Contributed
by Mario Carneiro, 30-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝐴 − 𝐶) ≤ (𝐵 − 𝐶)) |
|
Theorem | lesub2dd 8481 |
Subtraction of both sides of 'less than or equal to'. (Contributed by
Mario Carneiro, 30-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝐶 − 𝐵) ≤ (𝐶 − 𝐴)) |
|
Theorem | le2addd 8482 |
Adding both side of two inequalities. (Contributed by Mario Carneiro,
27-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐶)
& ⊢ (𝜑 → 𝐵 ≤ 𝐷) ⇒ ⊢ (𝜑 → (𝐴 + 𝐵) ≤ (𝐶 + 𝐷)) |
|
Theorem | le2subd 8483 |
Subtracting both sides of two 'less than or equal to' relations.
(Contributed by Mario Carneiro, 27-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐶)
& ⊢ (𝜑 → 𝐵 ≤ 𝐷) ⇒ ⊢ (𝜑 → (𝐴 − 𝐷) ≤ (𝐶 − 𝐵)) |
|
Theorem | ltleaddd 8484 |
Adding both sides of two orderings. (Contributed by Mario Carneiro,
27-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐶)
& ⊢ (𝜑 → 𝐵 ≤ 𝐷) ⇒ ⊢ (𝜑 → (𝐴 + 𝐵) < (𝐶 + 𝐷)) |
|
Theorem | leltaddd 8485 |
Adding both sides of two orderings. (Contributed by Mario Carneiro,
27-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐶)
& ⊢ (𝜑 → 𝐵 < 𝐷) ⇒ ⊢ (𝜑 → (𝐴 + 𝐵) < (𝐶 + 𝐷)) |
|
Theorem | lt2addd 8486 |
Adding both side of two inequalities. Theorem I.25 of [Apostol]
p. 20. (Contributed by Mario Carneiro, 27-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐶)
& ⊢ (𝜑 → 𝐵 < 𝐷) ⇒ ⊢ (𝜑 → (𝐴 + 𝐵) < (𝐶 + 𝐷)) |
|
Theorem | lt2subd 8487 |
Subtracting both sides of two 'less than' relations. (Contributed by
Mario Carneiro, 27-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐶)
& ⊢ (𝜑 → 𝐵 < 𝐷) ⇒ ⊢ (𝜑 → (𝐴 − 𝐷) < (𝐶 − 𝐵)) |
|
Theorem | possumd 8488 |
Condition for a positive sum. (Contributed by Scott Fenton,
16-Dec-2017.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ)
⇒ ⊢ (𝜑 → (0 < (𝐴 + 𝐵) ↔ -𝐵 < 𝐴)) |
|
Theorem | sublt0d 8489 |
When a subtraction gives a negative result. (Contributed by Glauco
Siliprandi, 11-Dec-2019.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ)
⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) < 0 ↔ 𝐴 < 𝐵)) |
|
Theorem | ltaddsublt 8490 |
Addition and subtraction on one side of 'less than'. (Contributed by AV,
24-Nov-2018.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 < 𝐶 ↔ ((𝐴 + 𝐵) − 𝐶) < 𝐴)) |
|
Theorem | 1le1 8491 |
1 ≤ 1. Common special case. (Contributed by David
A. Wheeler,
16-Jul-2016.)
|
⊢ 1 ≤ 1 |
|
Theorem | gt0add 8492 |
A positive sum must have a positive addend. Part of Definition 11.2.7(vi)
of [HoTT], p. (varies). (Contributed by Jim
Kingdon, 26-Jan-2020.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < (𝐴 + 𝐵)) → (0 < 𝐴 ∨ 0 < 𝐵)) |
|
4.3.5 Real Apartness
|
|
Syntax | creap 8493 |
Class of real apartness relation.
|
class #ℝ |
|
Definition | df-reap 8494* |
Define real apartness. Definition in Section 11.2.1 of [HoTT], p.
(varies). Although #ℝ is an
apartness relation on the reals (see
df-ap 8501 for more discussion of apartness relations),
for our purposes it
is just a stepping stone to defining # which is
an apartness
relation on complex numbers. On the reals, #ℝ and # agree
(apreap 8506). (Contributed by Jim Kingdon, 26-Jan-2020.)
|
⊢ #ℝ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑥 < 𝑦 ∨ 𝑦 < 𝑥))} |
|
Theorem | reapval 8495 |
Real apartness in terms of classes. Beyond the development of #
itself, proofs should use reaplt 8507 instead. (New usage is discouraged.)
(Contributed by Jim Kingdon, 29-Jan-2020.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 #ℝ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) |
|
Theorem | reapirr 8496 |
Real apartness is irreflexive. Part of Definition 11.2.7(v) of [HoTT],
p. (varies). Beyond the development of # itself,
proofs should
use apirr 8524 instead. (Contributed by Jim Kingdon,
26-Jan-2020.)
|
⊢ (𝐴 ∈ ℝ → ¬ 𝐴 #ℝ 𝐴) |
|
Theorem | recexre 8497* |
Existence of reciprocal of real number. (Contributed by Jim Kingdon,
29-Jan-2020.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 #ℝ 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1) |
|
Theorem | reapti 8498 |
Real apartness is tight. Beyond the development of apartness itself,
proofs should use apti 8541. (Contributed by Jim Kingdon, 30-Jan-2020.)
(New usage is discouraged.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ ¬ 𝐴 #ℝ 𝐵)) |
|
Theorem | recexgt0 8499* |
Existence of reciprocal of positive real number. (Contributed by Jim
Kingdon, 6-Feb-2020.)
|
⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (𝐴 · 𝑥) = 1)) |
|
4.3.6 Complex Apartness
|
|
Syntax | cap 8500 |
Class of complex apartness relation.
|
class # |