Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ltrenn | GIF version |
Description: Ordering of natural numbers with <N or <ℝ. (Contributed by Jim Kingdon, 12-Jul-2021.) |
Ref | Expression |
---|---|
ltrenn | ⊢ (𝐽 <N 𝐾 → 〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝐽, 1o〉] ~Q }, {𝑢 ∣ [〈𝐽, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉 <ℝ 〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝐾, 1o〉] ~Q }, {𝑢 ∣ [〈𝐾, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltrelpi 7259 | . . 3 ⊢ <N ⊆ (N × N) | |
2 | 1 | brel 4653 | . 2 ⊢ (𝐽 <N 𝐾 → (𝐽 ∈ N ∧ 𝐾 ∈ N)) |
3 | ltrennb 7789 | . . 3 ⊢ ((𝐽 ∈ N ∧ 𝐾 ∈ N) → (𝐽 <N 𝐾 ↔ 〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝐽, 1o〉] ~Q }, {𝑢 ∣ [〈𝐽, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉 <ℝ 〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝐾, 1o〉] ~Q }, {𝑢 ∣ [〈𝐾, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉)) | |
4 | 3 | biimpd 143 | . 2 ⊢ ((𝐽 ∈ N ∧ 𝐾 ∈ N) → (𝐽 <N 𝐾 → 〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝐽, 1o〉] ~Q }, {𝑢 ∣ [〈𝐽, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉 <ℝ 〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝐾, 1o〉] ~Q }, {𝑢 ∣ [〈𝐾, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉)) |
5 | 2, 4 | mpcom 36 | 1 ⊢ (𝐽 <N 𝐾 → 〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝐽, 1o〉] ~Q }, {𝑢 ∣ [〈𝐽, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉 <ℝ 〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝐾, 1o〉] ~Q }, {𝑢 ∣ [〈𝐾, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2135 {cab 2150 〈cop 3576 class class class wbr 3979 (class class class)co 5839 1oc1o 6371 [cec 6493 Ncnpi 7207 <N clti 7210 ~Q ceq 7214 <Q cltq 7220 1Pc1p 7227 +P cpp 7228 ~R cer 7231 0Rc0r 7233 <ℝ cltrr 7751 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-13 2137 ax-14 2138 ax-ext 2146 ax-coll 4094 ax-sep 4097 ax-nul 4105 ax-pow 4150 ax-pr 4184 ax-un 4408 ax-setind 4511 ax-iinf 4562 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 968 df-3an 969 df-tru 1345 df-fal 1348 df-nf 1448 df-sb 1750 df-eu 2016 df-mo 2017 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-ne 2335 df-ral 2447 df-rex 2448 df-reu 2449 df-rab 2451 df-v 2726 df-sbc 2950 df-csb 3044 df-dif 3116 df-un 3118 df-in 3120 df-ss 3127 df-nul 3408 df-pw 3558 df-sn 3579 df-pr 3580 df-op 3582 df-uni 3787 df-int 3822 df-iun 3865 df-br 3980 df-opab 4041 df-mpt 4042 df-tr 4078 df-eprel 4264 df-id 4268 df-po 4271 df-iso 4272 df-iord 4341 df-on 4343 df-suc 4346 df-iom 4565 df-xp 4607 df-rel 4608 df-cnv 4609 df-co 4610 df-dm 4611 df-rn 4612 df-res 4613 df-ima 4614 df-iota 5150 df-fun 5187 df-fn 5188 df-f 5189 df-f1 5190 df-fo 5191 df-f1o 5192 df-fv 5193 df-ov 5842 df-oprab 5843 df-mpo 5844 df-1st 6103 df-2nd 6104 df-recs 6267 df-irdg 6332 df-1o 6378 df-2o 6379 df-oadd 6382 df-omul 6383 df-er 6495 df-ec 6497 df-qs 6501 df-ni 7239 df-pli 7240 df-mi 7241 df-lti 7242 df-plpq 7279 df-mpq 7280 df-enq 7282 df-nqqs 7283 df-plqqs 7284 df-mqqs 7285 df-1nqqs 7286 df-rq 7287 df-ltnqqs 7288 df-enq0 7359 df-nq0 7360 df-0nq0 7361 df-plq0 7362 df-mq0 7363 df-inp 7401 df-i1p 7402 df-iplp 7403 df-iltp 7405 df-enr 7661 df-nr 7662 df-ltr 7665 df-0r 7666 df-r 7757 df-lt 7760 |
This theorem is referenced by: axcaucvglemcau 7833 |
Copyright terms: Public domain | W3C validator |