ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemk GIF version

Theorem caucvgprprlemk 7858
Description: Lemma for caucvgprpr 7887. Reciprocals of positive integers decrease as the positive integers increase. (Contributed by Jim Kingdon, 28-Nov-2020.)
Hypotheses
Ref Expression
caucvgprprlemk.jk (𝜑𝐽 <N 𝐾)
caucvgprprlemk.jkq (𝜑 → ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑢}⟩<P 𝑄)
Assertion
Ref Expression
caucvgprprlemk (𝜑 → ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩<P 𝑄)
Distinct variable groups:   𝐽,𝑙   𝑢,𝐽   𝐾,𝑙   𝑢,𝐾
Allowed substitution hints:   𝜑(𝑢,𝑙)   𝑄(𝑢,𝑙)

Proof of Theorem caucvgprprlemk
StepHypRef Expression
1 caucvgprprlemk.jk . . . 4 (𝜑𝐽 <N 𝐾)
2 ltrelpi 7499 . . . . . 6 <N ⊆ (N × N)
32brel 4768 . . . . 5 (𝐽 <N 𝐾 → (𝐽N𝐾N))
4 ltnnnq 7598 . . . . 5 ((𝐽N𝐾N) → (𝐽 <N 𝐾 ↔ [⟨𝐽, 1o⟩] ~Q <Q [⟨𝐾, 1o⟩] ~Q ))
51, 3, 43syl 17 . . . 4 (𝜑 → (𝐽 <N 𝐾 ↔ [⟨𝐽, 1o⟩] ~Q <Q [⟨𝐾, 1o⟩] ~Q ))
61, 5mpbid 147 . . 3 (𝜑 → [⟨𝐽, 1o⟩] ~Q <Q [⟨𝐾, 1o⟩] ~Q )
7 ltrnqi 7596 . . 3 ([⟨𝐽, 1o⟩] ~Q <Q [⟨𝐾, 1o⟩] ~Q → (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q (*Q‘[⟨𝐽, 1o⟩] ~Q ))
8 ltnqpri 7769 . . 3 ((*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q (*Q‘[⟨𝐽, 1o⟩] ~Q ) → ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑢}⟩)
96, 7, 83syl 17 . 2 (𝜑 → ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑢}⟩)
10 caucvgprprlemk.jkq . 2 (𝜑 → ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑢}⟩<P 𝑄)
11 ltsopr 7771 . . 3 <P Or P
12 ltrelpr 7680 . . 3 <P ⊆ (P × P)
1311, 12sotri 5120 . 2 ((⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑢}⟩ ∧ ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑢}⟩<P 𝑄) → ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩<P 𝑄)
149, 10, 13syl2anc 411 1 (𝜑 → ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩<P 𝑄)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2200  {cab 2215  cop 3669   class class class wbr 4082  cfv 5314  1oc1o 6545  [cec 6668  Ncnpi 7447   <N clti 7450   ~Q ceq 7454  *Qcrq 7459   <Q cltq 7460  Pcnp 7466  <P cltp 7470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-eprel 4377  df-id 4381  df-po 4384  df-iso 4385  df-iord 4454  df-on 4456  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-irdg 6506  df-1o 6552  df-oadd 6556  df-omul 6557  df-er 6670  df-ec 6672  df-qs 6676  df-ni 7479  df-pli 7480  df-mi 7481  df-lti 7482  df-plpq 7519  df-mpq 7520  df-enq 7522  df-nqqs 7523  df-plqqs 7524  df-mqqs 7525  df-1nqqs 7526  df-rq 7527  df-ltnqqs 7528  df-inp 7641  df-iltp 7645
This theorem is referenced by:  caucvgprprlem1  7884  caucvgprprlem2  7885
  Copyright terms: Public domain W3C validator