Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > caucvgprprlemk | GIF version |
Description: Lemma for caucvgprpr 7674. Reciprocals of positive integers decrease as the positive integers increase. (Contributed by Jim Kingdon, 28-Nov-2020.) |
Ref | Expression |
---|---|
caucvgprprlemk.jk | ⊢ (𝜑 → 𝐽 <N 𝐾) |
caucvgprprlemk.jkq | ⊢ (𝜑 → 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝐽, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝐽, 1o〉] ~Q ) <Q 𝑢}〉<P 𝑄) |
Ref | Expression |
---|---|
caucvgprprlemk | ⊢ (𝜑 → 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝐾, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝐾, 1o〉] ~Q ) <Q 𝑢}〉<P 𝑄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caucvgprprlemk.jk | . . . 4 ⊢ (𝜑 → 𝐽 <N 𝐾) | |
2 | ltrelpi 7286 | . . . . . 6 ⊢ <N ⊆ (N × N) | |
3 | 2 | brel 4663 | . . . . 5 ⊢ (𝐽 <N 𝐾 → (𝐽 ∈ N ∧ 𝐾 ∈ N)) |
4 | ltnnnq 7385 | . . . . 5 ⊢ ((𝐽 ∈ N ∧ 𝐾 ∈ N) → (𝐽 <N 𝐾 ↔ [〈𝐽, 1o〉] ~Q <Q [〈𝐾, 1o〉] ~Q )) | |
5 | 1, 3, 4 | 3syl 17 | . . . 4 ⊢ (𝜑 → (𝐽 <N 𝐾 ↔ [〈𝐽, 1o〉] ~Q <Q [〈𝐾, 1o〉] ~Q )) |
6 | 1, 5 | mpbid 146 | . . 3 ⊢ (𝜑 → [〈𝐽, 1o〉] ~Q <Q [〈𝐾, 1o〉] ~Q ) |
7 | ltrnqi 7383 | . . 3 ⊢ ([〈𝐽, 1o〉] ~Q <Q [〈𝐾, 1o〉] ~Q → (*Q‘[〈𝐾, 1o〉] ~Q ) <Q (*Q‘[〈𝐽, 1o〉] ~Q )) | |
8 | ltnqpri 7556 | . . 3 ⊢ ((*Q‘[〈𝐾, 1o〉] ~Q ) <Q (*Q‘[〈𝐽, 1o〉] ~Q ) → 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝐾, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝐾, 1o〉] ~Q ) <Q 𝑢}〉<P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝐽, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝐽, 1o〉] ~Q ) <Q 𝑢}〉) | |
9 | 6, 7, 8 | 3syl 17 | . 2 ⊢ (𝜑 → 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝐾, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝐾, 1o〉] ~Q ) <Q 𝑢}〉<P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝐽, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝐽, 1o〉] ~Q ) <Q 𝑢}〉) |
10 | caucvgprprlemk.jkq | . 2 ⊢ (𝜑 → 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝐽, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝐽, 1o〉] ~Q ) <Q 𝑢}〉<P 𝑄) | |
11 | ltsopr 7558 | . . 3 ⊢ <P Or P | |
12 | ltrelpr 7467 | . . 3 ⊢ <P ⊆ (P × P) | |
13 | 11, 12 | sotri 5006 | . 2 ⊢ ((〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝐾, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝐾, 1o〉] ~Q ) <Q 𝑢}〉<P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝐽, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝐽, 1o〉] ~Q ) <Q 𝑢}〉 ∧ 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝐽, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝐽, 1o〉] ~Q ) <Q 𝑢}〉<P 𝑄) → 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝐾, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝐾, 1o〉] ~Q ) <Q 𝑢}〉<P 𝑄) |
14 | 9, 10, 13 | syl2anc 409 | 1 ⊢ (𝜑 → 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝐾, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝐾, 1o〉] ~Q ) <Q 𝑢}〉<P 𝑄) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∈ wcel 2141 {cab 2156 〈cop 3586 class class class wbr 3989 ‘cfv 5198 1oc1o 6388 [cec 6511 Ncnpi 7234 <N clti 7237 ~Q ceq 7241 *Qcrq 7246 <Q cltq 7247 Pcnp 7253 <P cltp 7257 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-eprel 4274 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-irdg 6349 df-1o 6395 df-oadd 6399 df-omul 6400 df-er 6513 df-ec 6515 df-qs 6519 df-ni 7266 df-pli 7267 df-mi 7268 df-lti 7269 df-plpq 7306 df-mpq 7307 df-enq 7309 df-nqqs 7310 df-plqqs 7311 df-mqqs 7312 df-1nqqs 7313 df-rq 7314 df-ltnqqs 7315 df-inp 7428 df-iltp 7432 |
This theorem is referenced by: caucvgprprlem1 7671 caucvgprprlem2 7672 |
Copyright terms: Public domain | W3C validator |