![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > inss2 | GIF version |
Description: The intersection of two classes is a subset of one of them. Part of Exercise 12 of [TakeutiZaring] p. 18. (Contributed by NM, 27-Apr-1994.) |
Ref | Expression |
---|---|
inss2 | ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 3192 | . 2 ⊢ (𝐵 ∩ 𝐴) = (𝐴 ∩ 𝐵) | |
2 | inss1 3220 | . 2 ⊢ (𝐵 ∩ 𝐴) ⊆ 𝐵 | |
3 | 1, 2 | eqsstr3i 3057 | 1 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 |
Colors of variables: wff set class |
Syntax hints: ∩ cin 2998 ⊆ wss 2999 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-tru 1292 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-v 2621 df-in 3005 df-ss 3012 |
This theorem is referenced by: difin0 3356 bnd2 4008 ordin 4212 relin2 4556 relres 4741 ssrnres 4873 cnvcnv 4883 funinsn 5063 funimaexg 5098 fnresin2 5129 ssimaex 5365 ffvresb 5461 ofrfval 5864 fnofval 5865 ofrval 5866 off 5868 ofres 5869 ofco 5873 offres 5906 tpostpos 6029 smores3 6058 tfrlem5 6079 tfrexlem 6099 erinxp 6366 pmresg 6433 unfiin 6636 ltrelpi 6883 peano5nnnn 7427 peano5nni 8425 rexanuz 10421 structcnvcnv 11510 peano5set 11835 |
Copyright terms: Public domain | W3C validator |