Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > inss2 | GIF version |
Description: The intersection of two classes is a subset of one of them. Part of Exercise 12 of [TakeutiZaring] p. 18. (Contributed by NM, 27-Apr-1994.) |
Ref | Expression |
---|---|
inss2 | ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 3314 | . 2 ⊢ (𝐵 ∩ 𝐴) = (𝐴 ∩ 𝐵) | |
2 | inss1 3342 | . 2 ⊢ (𝐵 ∩ 𝐴) ⊆ 𝐵 | |
3 | 1, 2 | eqsstrri 3175 | 1 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 |
Colors of variables: wff set class |
Syntax hints: ∩ cin 3115 ⊆ wss 3116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-in 3122 df-ss 3129 |
This theorem is referenced by: difin0 3482 bnd2 4152 ordin 4363 relin2 4723 relres 4912 ssrnres 5046 cnvcnv 5056 funinsn 5237 funimaexg 5272 fnresin2 5303 ssimaex 5547 ffvresb 5648 ofrfval 6058 ofvalg 6059 ofrval 6060 off 6062 ofres 6064 ofco 6068 offres 6103 tpostpos 6232 smores3 6261 tfrlem5 6282 tfrexlem 6302 erinxp 6575 pmresg 6642 unfiin 6891 ltrelpi 7265 peano5nnnn 7833 peano5nni 8860 rexanuz 10930 structcnvcnv 12410 restsspw 12566 eltg4i 12695 ntrss2 12761 ntrin 12764 isopn3 12765 resttopon 12811 restuni2 12817 cnrest2r 12877 cnptopresti 12878 cnptoprest 12879 lmss 12886 metrest 13146 tgioo 13186 2sqlem8 13599 2sqlem9 13600 peano5set 13822 |
Copyright terms: Public domain | W3C validator |