ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inss2 GIF version

Theorem inss2 3393
Description: The intersection of two classes is a subset of one of them. Part of Exercise 12 of [TakeutiZaring] p. 18. (Contributed by NM, 27-Apr-1994.)
Assertion
Ref Expression
inss2 (𝐴𝐵) ⊆ 𝐵

Proof of Theorem inss2
StepHypRef Expression
1 incom 3364 . 2 (𝐵𝐴) = (𝐴𝐵)
2 inss1 3392 . 2 (𝐵𝐴) ⊆ 𝐵
31, 2eqsstrri 3225 1 (𝐴𝐵) ⊆ 𝐵
Colors of variables: wff set class
Syntax hints:  cin 3164  wss 3165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-in 3171  df-ss 3178
This theorem is referenced by:  difin0  3533  bnd2  4216  ordin  4430  relin2  4792  relres  4984  ssrnres  5122  cnvcnv  5132  funinsn  5317  funimaexg  5352  fnresin2  5385  ssimaex  5634  ffvresb  5737  ofrfval  6157  ofvalg  6158  ofrval  6159  off  6161  ofres  6163  ofco  6167  offres  6210  tpostpos  6340  smores3  6369  tfrlem5  6390  tfrexlem  6410  erinxp  6686  pmresg  6753  unfiin  7005  ltrelpi  7419  peano5nnnn  7987  peano5nni  9021  rexanuz  11218  bitsinv1  12192  structcnvcnv  12767  ressbasssd  12820  restsspw  12999  eltg4i  14445  ntrss2  14511  ntrin  14514  isopn3  14515  resttopon  14561  restuni2  14567  cnrest2r  14627  cnptopresti  14628  cnptoprest  14629  lmss  14636  metrest  14896  tgioo  14944  2sqlem8  15518  2sqlem9  15519  peano5set  15740
  Copyright terms: Public domain W3C validator