| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > inss2 | GIF version | ||
| Description: The intersection of two classes is a subset of one of them. Part of Exercise 12 of [TakeutiZaring] p. 18. (Contributed by NM, 27-Apr-1994.) |
| Ref | Expression |
|---|---|
| inss2 | ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | incom 3356 | . 2 ⊢ (𝐵 ∩ 𝐴) = (𝐴 ∩ 𝐵) | |
| 2 | inss1 3384 | . 2 ⊢ (𝐵 ∩ 𝐴) ⊆ 𝐵 | |
| 3 | 1, 2 | eqsstrri 3217 | 1 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 |
| Colors of variables: wff set class |
| Syntax hints: ∩ cin 3156 ⊆ wss 3157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-ss 3170 |
| This theorem is referenced by: difin0 3525 bnd2 4207 ordin 4421 relin2 4783 relres 4975 ssrnres 5113 cnvcnv 5123 funinsn 5308 funimaexg 5343 fnresin2 5376 ssimaex 5625 ffvresb 5728 ofrfval 6148 ofvalg 6149 ofrval 6150 off 6152 ofres 6154 ofco 6158 offres 6201 tpostpos 6331 smores3 6360 tfrlem5 6381 tfrexlem 6401 erinxp 6677 pmresg 6744 unfiin 6996 ltrelpi 7410 peano5nnnn 7978 peano5nni 9012 rexanuz 11172 bitsinv1 12146 structcnvcnv 12721 ressbasssd 12774 restsspw 12953 eltg4i 14399 ntrss2 14465 ntrin 14468 isopn3 14469 resttopon 14515 restuni2 14521 cnrest2r 14581 cnptopresti 14582 cnptoprest 14583 lmss 14590 metrest 14850 tgioo 14898 2sqlem8 15472 2sqlem9 15473 peano5set 15694 |
| Copyright terms: Public domain | W3C validator |