| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > inss2 | GIF version | ||
| Description: The intersection of two classes is a subset of one of them. Part of Exercise 12 of [TakeutiZaring] p. 18. (Contributed by NM, 27-Apr-1994.) |
| Ref | Expression |
|---|---|
| inss2 | ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | incom 3369 | . 2 ⊢ (𝐵 ∩ 𝐴) = (𝐴 ∩ 𝐵) | |
| 2 | inss1 3397 | . 2 ⊢ (𝐵 ∩ 𝐴) ⊆ 𝐵 | |
| 3 | 1, 2 | eqsstrri 3230 | 1 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 |
| Colors of variables: wff set class |
| Syntax hints: ∩ cin 3169 ⊆ wss 3170 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-in 3176 df-ss 3183 |
| This theorem is referenced by: difin0 3538 bnd2 4225 ordin 4440 relin2 4802 relres 4996 ssrnres 5134 cnvcnv 5144 funinsn 5332 funimaexg 5367 fnresin2 5401 ssimaex 5653 ffvresb 5756 ofrfval 6180 ofvalg 6181 ofrval 6182 off 6184 ofres 6186 ofco 6190 offres 6233 tpostpos 6363 smores3 6392 tfrlem5 6413 tfrexlem 6433 erinxp 6709 pmresg 6776 unfiin 7038 ltrelpi 7457 peano5nnnn 8025 peano5nni 9059 rexanuz 11374 bitsinv1 12348 structcnvcnv 12923 ressbasssd 12976 restsspw 13156 eltg4i 14602 ntrss2 14668 ntrin 14671 isopn3 14672 resttopon 14718 restuni2 14724 cnrest2r 14784 cnptopresti 14785 cnptoprest 14786 lmss 14793 metrest 15053 tgioo 15101 2sqlem8 15675 2sqlem9 15676 peano5set 16014 |
| Copyright terms: Public domain | W3C validator |