| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > inss2 | GIF version | ||
| Description: The intersection of two classes is a subset of one of them. Part of Exercise 12 of [TakeutiZaring] p. 18. (Contributed by NM, 27-Apr-1994.) |
| Ref | Expression |
|---|---|
| inss2 | ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | incom 3364 | . 2 ⊢ (𝐵 ∩ 𝐴) = (𝐴 ∩ 𝐵) | |
| 2 | inss1 3392 | . 2 ⊢ (𝐵 ∩ 𝐴) ⊆ 𝐵 | |
| 3 | 1, 2 | eqsstrri 3225 | 1 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 |
| Colors of variables: wff set class |
| Syntax hints: ∩ cin 3164 ⊆ wss 3165 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-in 3171 df-ss 3178 |
| This theorem is referenced by: difin0 3533 bnd2 4216 ordin 4430 relin2 4792 relres 4984 ssrnres 5122 cnvcnv 5132 funinsn 5317 funimaexg 5352 fnresin2 5385 ssimaex 5634 ffvresb 5737 ofrfval 6157 ofvalg 6158 ofrval 6159 off 6161 ofres 6163 ofco 6167 offres 6210 tpostpos 6340 smores3 6369 tfrlem5 6390 tfrexlem 6410 erinxp 6686 pmresg 6753 unfiin 7005 ltrelpi 7419 peano5nnnn 7987 peano5nni 9021 rexanuz 11218 bitsinv1 12192 structcnvcnv 12767 ressbasssd 12820 restsspw 12999 eltg4i 14445 ntrss2 14511 ntrin 14514 isopn3 14515 resttopon 14561 restuni2 14567 cnrest2r 14627 cnptopresti 14628 cnptoprest 14629 lmss 14636 metrest 14896 tgioo 14944 2sqlem8 15518 2sqlem9 15519 peano5set 15740 |
| Copyright terms: Public domain | W3C validator |