Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > inss2 | GIF version |
Description: The intersection of two classes is a subset of one of them. Part of Exercise 12 of [TakeutiZaring] p. 18. (Contributed by NM, 27-Apr-1994.) |
Ref | Expression |
---|---|
inss2 | ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 3319 | . 2 ⊢ (𝐵 ∩ 𝐴) = (𝐴 ∩ 𝐵) | |
2 | inss1 3347 | . 2 ⊢ (𝐵 ∩ 𝐴) ⊆ 𝐵 | |
3 | 1, 2 | eqsstrri 3180 | 1 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 |
Colors of variables: wff set class |
Syntax hints: ∩ cin 3120 ⊆ wss 3121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-in 3127 df-ss 3134 |
This theorem is referenced by: difin0 3487 bnd2 4157 ordin 4368 relin2 4728 relres 4917 ssrnres 5051 cnvcnv 5061 funinsn 5245 funimaexg 5280 fnresin2 5311 ssimaex 5555 ffvresb 5657 ofrfval 6067 ofvalg 6068 ofrval 6069 off 6071 ofres 6073 ofco 6077 offres 6112 tpostpos 6241 smores3 6270 tfrlem5 6291 tfrexlem 6311 erinxp 6584 pmresg 6651 unfiin 6900 ltrelpi 7275 peano5nnnn 7843 peano5nni 8870 rexanuz 10941 structcnvcnv 12421 restsspw 12578 eltg4i 12810 ntrss2 12876 ntrin 12879 isopn3 12880 resttopon 12926 restuni2 12932 cnrest2r 12992 cnptopresti 12993 cnptoprest 12994 lmss 13001 metrest 13261 tgioo 13301 2sqlem8 13714 2sqlem9 13715 peano5set 13937 |
Copyright terms: Public domain | W3C validator |