| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > inss2 | GIF version | ||
| Description: The intersection of two classes is a subset of one of them. Part of Exercise 12 of [TakeutiZaring] p. 18. (Contributed by NM, 27-Apr-1994.) |
| Ref | Expression |
|---|---|
| inss2 | ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | incom 3396 | . 2 ⊢ (𝐵 ∩ 𝐴) = (𝐴 ∩ 𝐵) | |
| 2 | inss1 3424 | . 2 ⊢ (𝐵 ∩ 𝐴) ⊆ 𝐵 | |
| 3 | 1, 2 | eqsstrri 3257 | 1 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 |
| Colors of variables: wff set class |
| Syntax hints: ∩ cin 3196 ⊆ wss 3197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-in 3203 df-ss 3210 |
| This theorem is referenced by: difin0 3565 bnd2 4256 ordin 4475 relin2 4837 relres 5032 ssrnres 5170 cnvcnv 5180 funinsn 5369 funimaexg 5404 fnresin2 5438 ssimaex 5694 ffvresb 5797 ofrfval 6225 ofvalg 6226 ofrval 6227 off 6229 ofres 6231 ofco 6235 offres 6278 tpostpos 6408 smores3 6437 tfrlem5 6458 tfrexlem 6478 erinxp 6754 pmresg 6821 unfiin 7084 ltrelpi 7507 peano5nnnn 8075 peano5nni 9109 rexanuz 11494 bitsinv1 12468 structcnvcnv 13043 ressbasssd 13097 restsspw 13277 eltg4i 14723 ntrss2 14789 ntrin 14792 isopn3 14793 resttopon 14839 restuni2 14845 cnrest2r 14905 cnptopresti 14906 cnptoprest 14907 lmss 14914 metrest 15174 tgioo 15222 2sqlem8 15796 2sqlem9 15797 peano5set 16261 |
| Copyright terms: Public domain | W3C validator |