ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlem1 GIF version

Theorem caucvgprprlem1 7884
Description: Lemma for caucvgprpr 7887. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 25-Nov-2020.)
Hypotheses
Ref Expression
caucvgprpr.f (𝜑𝐹:NP)
caucvgprpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))
caucvgprpr.bnd (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))
caucvgprpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
caucvgprprlemlim.q (𝜑𝑄P)
caucvgprprlemlim.jk (𝜑𝐽 <N 𝐾)
caucvgprprlemlim.jkq (𝜑 → ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑢}⟩<P 𝑄)
Assertion
Ref Expression
caucvgprprlem1 (𝜑 → (𝐹𝐾)<P (𝐿 +P 𝑄))
Distinct variable groups:   𝐴,𝑚   𝑚,𝐹   𝐴,𝑟   𝐹,𝑟,𝑙,𝑢,𝑛,𝑘   𝐽,𝑙,𝑢   𝐾,𝑙,𝑟,𝑢   𝑄,𝑟   𝑘,𝐿   𝜑,𝑟   𝑞,𝑝,𝑟,𝑙,𝑢   𝑚,𝑟   𝑘,𝑙,𝑢,𝑟,𝑝,𝑞   𝑛,𝑙,𝑢,𝑟
Allowed substitution hints:   𝜑(𝑢,𝑘,𝑚,𝑛,𝑞,𝑝,𝑙)   𝐴(𝑢,𝑘,𝑛,𝑞,𝑝,𝑙)   𝑄(𝑢,𝑘,𝑚,𝑛,𝑞,𝑝,𝑙)   𝐹(𝑞,𝑝)   𝐽(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝)   𝐾(𝑘,𝑚,𝑛,𝑞,𝑝)   𝐿(𝑢,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)

Proof of Theorem caucvgprprlem1
StepHypRef Expression
1 caucvgprpr.f . 2 (𝜑𝐹:NP)
2 caucvgprpr.cau . 2 (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))
3 caucvgprpr.bnd . 2 (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))
4 caucvgprpr.lim . 2 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
5 caucvgprprlemlim.jk . . . . 5 (𝜑𝐽 <N 𝐾)
6 ltrelpi 7499 . . . . . 6 <N ⊆ (N × N)
76brel 4768 . . . . 5 (𝐽 <N 𝐾 → (𝐽N𝐾N))
85, 7syl 14 . . . 4 (𝜑 → (𝐽N𝐾N))
98simprd 114 . . 3 (𝜑𝐾N)
101, 9ffvelcdmd 5764 . 2 (𝜑 → (𝐹𝐾) ∈ P)
11 caucvgprprlemlim.q . 2 (𝜑𝑄P)
12 caucvgprprlemlim.jkq . . . . . 6 (𝜑 → ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑢}⟩<P 𝑄)
135, 12caucvgprprlemk 7858 . . . . 5 (𝜑 → ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩<P 𝑄)
14 nnnq 7597 . . . . . . . 8 (𝐾N → [⟨𝐾, 1o⟩] ~QQ)
159, 14syl 14 . . . . . . 7 (𝜑 → [⟨𝐾, 1o⟩] ~QQ)
16 recclnq 7567 . . . . . . 7 ([⟨𝐾, 1o⟩] ~QQ → (*Q‘[⟨𝐾, 1o⟩] ~Q ) ∈ Q)
17 nqprlu 7722 . . . . . . 7 ((*Q‘[⟨𝐾, 1o⟩] ~Q ) ∈ Q → ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩ ∈ P)
1815, 16, 173syl 17 . . . . . 6 (𝜑 → ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩ ∈ P)
19 ltaprg 7794 . . . . . 6 ((⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩ ∈ P𝑄P ∧ (𝐹𝐾) ∈ P) → (⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩<P 𝑄 ↔ ((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩)<P ((𝐹𝐾) +P 𝑄)))
2018, 11, 10, 19syl3anc 1271 . . . . 5 (𝜑 → (⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩<P 𝑄 ↔ ((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩)<P ((𝐹𝐾) +P 𝑄)))
2113, 20mpbid 147 . . . 4 (𝜑 → ((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩)<P ((𝐹𝐾) +P 𝑄))
22 opeq1 3856 . . . . . . . . . . . 12 (𝑟 = 𝐾 → ⟨𝑟, 1o⟩ = ⟨𝐾, 1o⟩)
2322eceq1d 6706 . . . . . . . . . . 11 (𝑟 = 𝐾 → [⟨𝑟, 1o⟩] ~Q = [⟨𝐾, 1o⟩] ~Q )
2423fveq2d 5627 . . . . . . . . . 10 (𝑟 = 𝐾 → (*Q‘[⟨𝑟, 1o⟩] ~Q ) = (*Q‘[⟨𝐾, 1o⟩] ~Q ))
2524breq2d 4094 . . . . . . . . 9 (𝑟 = 𝐾 → (𝑙 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q ) ↔ 𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )))
2625abbidv 2347 . . . . . . . 8 (𝑟 = 𝐾 → {𝑙𝑙 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )} = {𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )})
2724breq1d 4092 . . . . . . . . 9 (𝑟 = 𝐾 → ((*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑢 ↔ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢))
2827abbidv 2347 . . . . . . . 8 (𝑟 = 𝐾 → {𝑢 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑢} = {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢})
2926, 28opeq12d 3864 . . . . . . 7 (𝑟 = 𝐾 → ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑢}⟩ = ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩)
3029oveq2d 6010 . . . . . 6 (𝑟 = 𝐾 → ((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑢}⟩) = ((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩))
31 fveq2 5623 . . . . . . 7 (𝑟 = 𝐾 → (𝐹𝑟) = (𝐹𝐾))
3231oveq1d 6009 . . . . . 6 (𝑟 = 𝐾 → ((𝐹𝑟) +P 𝑄) = ((𝐹𝐾) +P 𝑄))
3330, 32breq12d 4095 . . . . 5 (𝑟 = 𝐾 → (((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑢}⟩)<P ((𝐹𝑟) +P 𝑄) ↔ ((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩)<P ((𝐹𝐾) +P 𝑄)))
3433rspcev 2907 . . . 4 ((𝐾N ∧ ((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩)<P ((𝐹𝐾) +P 𝑄)) → ∃𝑟N ((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑢}⟩)<P ((𝐹𝑟) +P 𝑄))
359, 21, 34syl2anc 411 . . 3 (𝜑 → ∃𝑟N ((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑢}⟩)<P ((𝐹𝑟) +P 𝑄))
36 breq1 4085 . . . . . . . 8 (𝑙 = 𝑝 → (𝑙 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q ) ↔ 𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )))
3736cbvabv 2354 . . . . . . 7 {𝑙𝑙 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )} = {𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}
38 breq2 4086 . . . . . . . 8 (𝑢 = 𝑞 → ((*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑢 ↔ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞))
3938cbvabv 2354 . . . . . . 7 {𝑢 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑢} = {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}
4037, 39opeq12i 3861 . . . . . 6 ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑢}⟩ = ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩
4140oveq2i 6005 . . . . 5 ((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑢}⟩) = ((𝐹𝐾) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)
4241breq1i 4089 . . . 4 (((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑢}⟩)<P ((𝐹𝑟) +P 𝑄) ↔ ((𝐹𝐾) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑟) +P 𝑄))
4342rexbii 2537 . . 3 (∃𝑟N ((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑢}⟩)<P ((𝐹𝑟) +P 𝑄) ↔ ∃𝑟N ((𝐹𝐾) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑟) +P 𝑄))
4435, 43sylib 122 . 2 (𝜑 → ∃𝑟N ((𝐹𝐾) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑟) +P 𝑄))
451, 2, 3, 4, 10, 11, 44caucvgprprlemaddq 7883 1 (𝜑 → (𝐹𝐾)<P (𝐿 +P 𝑄))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  {cab 2215  wral 2508  wrex 2509  {crab 2512  cop 3669   class class class wbr 4082  wf 5310  cfv 5314  (class class class)co 5994  1oc1o 6545  [cec 6668  Ncnpi 7447   <N clti 7450   ~Q ceq 7454  Qcnq 7455   +Q cplq 7457  *Qcrq 7459   <Q cltq 7460  Pcnp 7466   +P cpp 7468  <P cltp 7470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-eprel 4377  df-id 4381  df-po 4384  df-iso 4385  df-iord 4454  df-on 4456  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-irdg 6506  df-1o 6552  df-2o 6553  df-oadd 6556  df-omul 6557  df-er 6670  df-ec 6672  df-qs 6676  df-ni 7479  df-pli 7480  df-mi 7481  df-lti 7482  df-plpq 7519  df-mpq 7520  df-enq 7522  df-nqqs 7523  df-plqqs 7524  df-mqqs 7525  df-1nqqs 7526  df-rq 7527  df-ltnqqs 7528  df-enq0 7599  df-nq0 7600  df-0nq0 7601  df-plq0 7602  df-mq0 7603  df-inp 7641  df-iplp 7643  df-iltp 7645
This theorem is referenced by:  caucvgprprlemlim  7886
  Copyright terms: Public domain W3C validator