ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlem1 GIF version

Theorem caucvgprprlem1 7776
Description: Lemma for caucvgprpr 7779. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 25-Nov-2020.)
Hypotheses
Ref Expression
caucvgprpr.f (𝜑𝐹:NP)
caucvgprpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))
caucvgprpr.bnd (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))
caucvgprpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
caucvgprprlemlim.q (𝜑𝑄P)
caucvgprprlemlim.jk (𝜑𝐽 <N 𝐾)
caucvgprprlemlim.jkq (𝜑 → ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑢}⟩<P 𝑄)
Assertion
Ref Expression
caucvgprprlem1 (𝜑 → (𝐹𝐾)<P (𝐿 +P 𝑄))
Distinct variable groups:   𝐴,𝑚   𝑚,𝐹   𝐴,𝑟   𝐹,𝑟,𝑙,𝑢,𝑛,𝑘   𝐽,𝑙,𝑢   𝐾,𝑙,𝑟,𝑢   𝑄,𝑟   𝑘,𝐿   𝜑,𝑟   𝑞,𝑝,𝑟,𝑙,𝑢   𝑚,𝑟   𝑘,𝑙,𝑢,𝑟,𝑝,𝑞   𝑛,𝑙,𝑢,𝑟
Allowed substitution hints:   𝜑(𝑢,𝑘,𝑚,𝑛,𝑞,𝑝,𝑙)   𝐴(𝑢,𝑘,𝑛,𝑞,𝑝,𝑙)   𝑄(𝑢,𝑘,𝑚,𝑛,𝑞,𝑝,𝑙)   𝐹(𝑞,𝑝)   𝐽(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝)   𝐾(𝑘,𝑚,𝑛,𝑞,𝑝)   𝐿(𝑢,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)

Proof of Theorem caucvgprprlem1
StepHypRef Expression
1 caucvgprpr.f . 2 (𝜑𝐹:NP)
2 caucvgprpr.cau . 2 (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))
3 caucvgprpr.bnd . 2 (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))
4 caucvgprpr.lim . 2 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
5 caucvgprprlemlim.jk . . . . 5 (𝜑𝐽 <N 𝐾)
6 ltrelpi 7391 . . . . . 6 <N ⊆ (N × N)
76brel 4715 . . . . 5 (𝐽 <N 𝐾 → (𝐽N𝐾N))
85, 7syl 14 . . . 4 (𝜑 → (𝐽N𝐾N))
98simprd 114 . . 3 (𝜑𝐾N)
101, 9ffvelcdmd 5698 . 2 (𝜑 → (𝐹𝐾) ∈ P)
11 caucvgprprlemlim.q . 2 (𝜑𝑄P)
12 caucvgprprlemlim.jkq . . . . . 6 (𝜑 → ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑢}⟩<P 𝑄)
135, 12caucvgprprlemk 7750 . . . . 5 (𝜑 → ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩<P 𝑄)
14 nnnq 7489 . . . . . . . 8 (𝐾N → [⟨𝐾, 1o⟩] ~QQ)
159, 14syl 14 . . . . . . 7 (𝜑 → [⟨𝐾, 1o⟩] ~QQ)
16 recclnq 7459 . . . . . . 7 ([⟨𝐾, 1o⟩] ~QQ → (*Q‘[⟨𝐾, 1o⟩] ~Q ) ∈ Q)
17 nqprlu 7614 . . . . . . 7 ((*Q‘[⟨𝐾, 1o⟩] ~Q ) ∈ Q → ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩ ∈ P)
1815, 16, 173syl 17 . . . . . 6 (𝜑 → ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩ ∈ P)
19 ltaprg 7686 . . . . . 6 ((⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩ ∈ P𝑄P ∧ (𝐹𝐾) ∈ P) → (⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩<P 𝑄 ↔ ((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩)<P ((𝐹𝐾) +P 𝑄)))
2018, 11, 10, 19syl3anc 1249 . . . . 5 (𝜑 → (⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩<P 𝑄 ↔ ((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩)<P ((𝐹𝐾) +P 𝑄)))
2113, 20mpbid 147 . . . 4 (𝜑 → ((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩)<P ((𝐹𝐾) +P 𝑄))
22 opeq1 3808 . . . . . . . . . . . 12 (𝑟 = 𝐾 → ⟨𝑟, 1o⟩ = ⟨𝐾, 1o⟩)
2322eceq1d 6628 . . . . . . . . . . 11 (𝑟 = 𝐾 → [⟨𝑟, 1o⟩] ~Q = [⟨𝐾, 1o⟩] ~Q )
2423fveq2d 5562 . . . . . . . . . 10 (𝑟 = 𝐾 → (*Q‘[⟨𝑟, 1o⟩] ~Q ) = (*Q‘[⟨𝐾, 1o⟩] ~Q ))
2524breq2d 4045 . . . . . . . . 9 (𝑟 = 𝐾 → (𝑙 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q ) ↔ 𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )))
2625abbidv 2314 . . . . . . . 8 (𝑟 = 𝐾 → {𝑙𝑙 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )} = {𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )})
2724breq1d 4043 . . . . . . . . 9 (𝑟 = 𝐾 → ((*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑢 ↔ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢))
2827abbidv 2314 . . . . . . . 8 (𝑟 = 𝐾 → {𝑢 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑢} = {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢})
2926, 28opeq12d 3816 . . . . . . 7 (𝑟 = 𝐾 → ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑢}⟩ = ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩)
3029oveq2d 5938 . . . . . 6 (𝑟 = 𝐾 → ((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑢}⟩) = ((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩))
31 fveq2 5558 . . . . . . 7 (𝑟 = 𝐾 → (𝐹𝑟) = (𝐹𝐾))
3231oveq1d 5937 . . . . . 6 (𝑟 = 𝐾 → ((𝐹𝑟) +P 𝑄) = ((𝐹𝐾) +P 𝑄))
3330, 32breq12d 4046 . . . . 5 (𝑟 = 𝐾 → (((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑢}⟩)<P ((𝐹𝑟) +P 𝑄) ↔ ((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩)<P ((𝐹𝐾) +P 𝑄)))
3433rspcev 2868 . . . 4 ((𝐾N ∧ ((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩)<P ((𝐹𝐾) +P 𝑄)) → ∃𝑟N ((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑢}⟩)<P ((𝐹𝑟) +P 𝑄))
359, 21, 34syl2anc 411 . . 3 (𝜑 → ∃𝑟N ((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑢}⟩)<P ((𝐹𝑟) +P 𝑄))
36 breq1 4036 . . . . . . . 8 (𝑙 = 𝑝 → (𝑙 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q ) ↔ 𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )))
3736cbvabv 2321 . . . . . . 7 {𝑙𝑙 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )} = {𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}
38 breq2 4037 . . . . . . . 8 (𝑢 = 𝑞 → ((*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑢 ↔ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞))
3938cbvabv 2321 . . . . . . 7 {𝑢 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑢} = {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}
4037, 39opeq12i 3813 . . . . . 6 ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑢}⟩ = ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩
4140oveq2i 5933 . . . . 5 ((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑢}⟩) = ((𝐹𝐾) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)
4241breq1i 4040 . . . 4 (((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑢}⟩)<P ((𝐹𝑟) +P 𝑄) ↔ ((𝐹𝐾) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑟) +P 𝑄))
4342rexbii 2504 . . 3 (∃𝑟N ((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑢}⟩)<P ((𝐹𝑟) +P 𝑄) ↔ ∃𝑟N ((𝐹𝐾) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑟) +P 𝑄))
4435, 43sylib 122 . 2 (𝜑 → ∃𝑟N ((𝐹𝐾) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑟) +P 𝑄))
451, 2, 3, 4, 10, 11, 44caucvgprprlemaddq 7775 1 (𝜑 → (𝐹𝐾)<P (𝐿 +P 𝑄))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  {cab 2182  wral 2475  wrex 2476  {crab 2479  cop 3625   class class class wbr 4033  wf 5254  cfv 5258  (class class class)co 5922  1oc1o 6467  [cec 6590  Ncnpi 7339   <N clti 7342   ~Q ceq 7346  Qcnq 7347   +Q cplq 7349  *Qcrq 7351   <Q cltq 7352  Pcnp 7358   +P cpp 7360  <P cltp 7362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-eprel 4324  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-1o 6474  df-2o 6475  df-oadd 6478  df-omul 6479  df-er 6592  df-ec 6594  df-qs 6598  df-ni 7371  df-pli 7372  df-mi 7373  df-lti 7374  df-plpq 7411  df-mpq 7412  df-enq 7414  df-nqqs 7415  df-plqqs 7416  df-mqqs 7417  df-1nqqs 7418  df-rq 7419  df-ltnqqs 7420  df-enq0 7491  df-nq0 7492  df-0nq0 7493  df-plq0 7494  df-mq0 7495  df-inp 7533  df-iplp 7535  df-iltp 7537
This theorem is referenced by:  caucvgprprlemlim  7778
  Copyright terms: Public domain W3C validator