Proof of Theorem caucvgprprlem1
Step | Hyp | Ref
| Expression |
1 | | caucvgprpr.f |
. 2
⊢ (𝜑 → 𝐹:N⟶P) |
2 | | caucvgprpr.cau |
. 2
⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N
𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉)))) |
3 | | caucvgprpr.bnd |
. 2
⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) |
4 | | caucvgprpr.lim |
. 2
⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N
〈{𝑝 ∣ 𝑝 <Q
(𝑙
+Q (*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 |
5 | | caucvgprprlemlim.jk |
. . . . 5
⊢ (𝜑 → 𝐽 <N 𝐾) |
6 | | ltrelpi 7265 |
. . . . . 6
⊢
<N ⊆ (N ×
N) |
7 | 6 | brel 4656 |
. . . . 5
⊢ (𝐽 <N
𝐾 → (𝐽 ∈ N ∧ 𝐾 ∈
N)) |
8 | 5, 7 | syl 14 |
. . . 4
⊢ (𝜑 → (𝐽 ∈ N ∧ 𝐾 ∈
N)) |
9 | 8 | simprd 113 |
. . 3
⊢ (𝜑 → 𝐾 ∈ N) |
10 | 1, 9 | ffvelrnd 5621 |
. 2
⊢ (𝜑 → (𝐹‘𝐾) ∈ P) |
11 | | caucvgprprlemlim.q |
. 2
⊢ (𝜑 → 𝑄 ∈ P) |
12 | | caucvgprprlemlim.jkq |
. . . . . 6
⊢ (𝜑 → 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑢}〉<P 𝑄) |
13 | 5, 12 | caucvgprprlemk 7624 |
. . . . 5
⊢ (𝜑 → 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐾, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐾, 1o〉]
~Q ) <Q 𝑢}〉<P 𝑄) |
14 | | nnnq 7363 |
. . . . . . . 8
⊢ (𝐾 ∈ N →
[〈𝐾,
1o〉] ~Q ∈
Q) |
15 | 9, 14 | syl 14 |
. . . . . . 7
⊢ (𝜑 → [〈𝐾, 1o〉]
~Q ∈ Q) |
16 | | recclnq 7333 |
. . . . . . 7
⊢
([〈𝐾,
1o〉] ~Q ∈ Q →
(*Q‘[〈𝐾, 1o〉]
~Q ) ∈ Q) |
17 | | nqprlu 7488 |
. . . . . . 7
⊢
((*Q‘[〈𝐾, 1o〉]
~Q ) ∈ Q → 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐾, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐾, 1o〉]
~Q ) <Q 𝑢}〉 ∈
P) |
18 | 15, 16, 17 | 3syl 17 |
. . . . . 6
⊢ (𝜑 → 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐾, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐾, 1o〉]
~Q ) <Q 𝑢}〉 ∈
P) |
19 | | ltaprg 7560 |
. . . . . 6
⊢
((〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝐾, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐾, 1o〉]
~Q ) <Q 𝑢}〉 ∈ P ∧ 𝑄 ∈ P ∧
(𝐹‘𝐾) ∈ P) →
(〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐾, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐾, 1o〉]
~Q ) <Q 𝑢}〉<P 𝑄 ↔ ((𝐹‘𝐾) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐾, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐾, 1o〉]
~Q ) <Q 𝑢}〉)<P
((𝐹‘𝐾) +P 𝑄))) |
20 | 18, 11, 10, 19 | syl3anc 1228 |
. . . . 5
⊢ (𝜑 → (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐾, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐾, 1o〉]
~Q ) <Q 𝑢}〉<P 𝑄 ↔ ((𝐹‘𝐾) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐾, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐾, 1o〉]
~Q ) <Q 𝑢}〉)<P
((𝐹‘𝐾) +P 𝑄))) |
21 | 13, 20 | mpbid 146 |
. . . 4
⊢ (𝜑 → ((𝐹‘𝐾) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐾, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐾, 1o〉]
~Q ) <Q 𝑢}〉)<P
((𝐹‘𝐾) +P 𝑄)) |
22 | | opeq1 3758 |
. . . . . . . . . . . 12
⊢ (𝑟 = 𝐾 → 〈𝑟, 1o〉 = 〈𝐾,
1o〉) |
23 | 22 | eceq1d 6537 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝐾 → [〈𝑟, 1o〉]
~Q = [〈𝐾, 1o〉]
~Q ) |
24 | 23 | fveq2d 5490 |
. . . . . . . . . 10
⊢ (𝑟 = 𝐾 →
(*Q‘[〈𝑟, 1o〉]
~Q ) = (*Q‘[〈𝐾, 1o〉]
~Q )) |
25 | 24 | breq2d 3994 |
. . . . . . . . 9
⊢ (𝑟 = 𝐾 → (𝑙 <Q
(*Q‘[〈𝑟, 1o〉]
~Q ) ↔ 𝑙 <Q
(*Q‘[〈𝐾, 1o〉]
~Q ))) |
26 | 25 | abbidv 2284 |
. . . . . . . 8
⊢ (𝑟 = 𝐾 → {𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )} = {𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐾, 1o〉]
~Q )}) |
27 | 24 | breq1d 3992 |
. . . . . . . . 9
⊢ (𝑟 = 𝐾 →
((*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑢 ↔
(*Q‘[〈𝐾, 1o〉]
~Q ) <Q 𝑢)) |
28 | 27 | abbidv 2284 |
. . . . . . . 8
⊢ (𝑟 = 𝐾 → {𝑢 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑢} = {𝑢 ∣
(*Q‘[〈𝐾, 1o〉]
~Q ) <Q 𝑢}) |
29 | 26, 28 | opeq12d 3766 |
. . . . . . 7
⊢ (𝑟 = 𝐾 → 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑢}〉 = 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐾, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐾, 1o〉]
~Q ) <Q 𝑢}〉) |
30 | 29 | oveq2d 5858 |
. . . . . 6
⊢ (𝑟 = 𝐾 → ((𝐹‘𝐾) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑢}〉) = ((𝐹‘𝐾) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐾, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐾, 1o〉]
~Q ) <Q 𝑢}〉)) |
31 | | fveq2 5486 |
. . . . . . 7
⊢ (𝑟 = 𝐾 → (𝐹‘𝑟) = (𝐹‘𝐾)) |
32 | 31 | oveq1d 5857 |
. . . . . 6
⊢ (𝑟 = 𝐾 → ((𝐹‘𝑟) +P 𝑄) = ((𝐹‘𝐾) +P 𝑄)) |
33 | 30, 32 | breq12d 3995 |
. . . . 5
⊢ (𝑟 = 𝐾 → (((𝐹‘𝐾) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑢}〉)<P
((𝐹‘𝑟) +P
𝑄) ↔ ((𝐹‘𝐾) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐾, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐾, 1o〉]
~Q ) <Q 𝑢}〉)<P
((𝐹‘𝐾) +P 𝑄))) |
34 | 33 | rspcev 2830 |
. . . 4
⊢ ((𝐾 ∈ N ∧
((𝐹‘𝐾) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐾, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐾, 1o〉]
~Q ) <Q 𝑢}〉)<P
((𝐹‘𝐾) +P 𝑄)) → ∃𝑟 ∈ N ((𝐹‘𝐾) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑢}〉)<P
((𝐹‘𝑟) +P
𝑄)) |
35 | 9, 21, 34 | syl2anc 409 |
. . 3
⊢ (𝜑 → ∃𝑟 ∈ N ((𝐹‘𝐾) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑢}〉)<P
((𝐹‘𝑟) +P
𝑄)) |
36 | | breq1 3985 |
. . . . . . . 8
⊢ (𝑙 = 𝑝 → (𝑙 <Q
(*Q‘[〈𝑟, 1o〉]
~Q ) ↔ 𝑝 <Q
(*Q‘[〈𝑟, 1o〉]
~Q ))) |
37 | 36 | cbvabv 2291 |
. . . . . . 7
⊢ {𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )} = {𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )} |
38 | | breq2 3986 |
. . . . . . . 8
⊢ (𝑢 = 𝑞 →
((*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑢 ↔
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑞)) |
39 | 38 | cbvabv 2291 |
. . . . . . 7
⊢ {𝑢 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑢} = {𝑞 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑞} |
40 | 37, 39 | opeq12i 3763 |
. . . . . 6
⊢
〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑢}〉 = 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑞}〉 |
41 | 40 | oveq2i 5853 |
. . . . 5
⊢ ((𝐹‘𝐾) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑢}〉) = ((𝐹‘𝐾) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑞}〉) |
42 | 41 | breq1i 3989 |
. . . 4
⊢ (((𝐹‘𝐾) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑢}〉)<P
((𝐹‘𝑟) +P
𝑄) ↔ ((𝐹‘𝐾) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑞}〉)<P
((𝐹‘𝑟) +P
𝑄)) |
43 | 42 | rexbii 2473 |
. . 3
⊢
(∃𝑟 ∈
N ((𝐹‘𝐾) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑢}〉)<P
((𝐹‘𝑟) +P
𝑄) ↔ ∃𝑟 ∈ N ((𝐹‘𝐾) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑞}〉)<P
((𝐹‘𝑟) +P
𝑄)) |
44 | 35, 43 | sylib 121 |
. 2
⊢ (𝜑 → ∃𝑟 ∈ N ((𝐹‘𝐾) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑞}〉)<P
((𝐹‘𝑟) +P
𝑄)) |
45 | 1, 2, 3, 4, 10, 11, 44 | caucvgprprlemaddq 7649 |
1
⊢ (𝜑 → (𝐹‘𝐾)<P (𝐿 +P
𝑄)) |