ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlem1 GIF version

Theorem caucvgprprlem1 7537
Description: Lemma for caucvgprpr 7540. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 25-Nov-2020.)
Hypotheses
Ref Expression
caucvgprpr.f (𝜑𝐹:NP)
caucvgprpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))
caucvgprpr.bnd (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))
caucvgprpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
caucvgprprlemlim.q (𝜑𝑄P)
caucvgprprlemlim.jk (𝜑𝐽 <N 𝐾)
caucvgprprlemlim.jkq (𝜑 → ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑢}⟩<P 𝑄)
Assertion
Ref Expression
caucvgprprlem1 (𝜑 → (𝐹𝐾)<P (𝐿 +P 𝑄))
Distinct variable groups:   𝐴,𝑚   𝑚,𝐹   𝐴,𝑟   𝐹,𝑟,𝑙,𝑢,𝑛,𝑘   𝐽,𝑙,𝑢   𝐾,𝑙,𝑟,𝑢   𝑄,𝑟   𝑘,𝐿   𝜑,𝑟   𝑞,𝑝,𝑟,𝑙,𝑢   𝑚,𝑟   𝑘,𝑙,𝑢,𝑟,𝑝,𝑞   𝑛,𝑙,𝑢,𝑟
Allowed substitution hints:   𝜑(𝑢,𝑘,𝑚,𝑛,𝑞,𝑝,𝑙)   𝐴(𝑢,𝑘,𝑛,𝑞,𝑝,𝑙)   𝑄(𝑢,𝑘,𝑚,𝑛,𝑞,𝑝,𝑙)   𝐹(𝑞,𝑝)   𝐽(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝)   𝐾(𝑘,𝑚,𝑛,𝑞,𝑝)   𝐿(𝑢,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)

Proof of Theorem caucvgprprlem1
StepHypRef Expression
1 caucvgprpr.f . 2 (𝜑𝐹:NP)
2 caucvgprpr.cau . 2 (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))
3 caucvgprpr.bnd . 2 (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))
4 caucvgprpr.lim . 2 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
5 caucvgprprlemlim.jk . . . . 5 (𝜑𝐽 <N 𝐾)
6 ltrelpi 7152 . . . . . 6 <N ⊆ (N × N)
76brel 4595 . . . . 5 (𝐽 <N 𝐾 → (𝐽N𝐾N))
85, 7syl 14 . . . 4 (𝜑 → (𝐽N𝐾N))
98simprd 113 . . 3 (𝜑𝐾N)
101, 9ffvelrnd 5560 . 2 (𝜑 → (𝐹𝐾) ∈ P)
11 caucvgprprlemlim.q . 2 (𝜑𝑄P)
12 caucvgprprlemlim.jkq . . . . . 6 (𝜑 → ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑢}⟩<P 𝑄)
135, 12caucvgprprlemk 7511 . . . . 5 (𝜑 → ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩<P 𝑄)
14 nnnq 7250 . . . . . . . 8 (𝐾N → [⟨𝐾, 1o⟩] ~QQ)
159, 14syl 14 . . . . . . 7 (𝜑 → [⟨𝐾, 1o⟩] ~QQ)
16 recclnq 7220 . . . . . . 7 ([⟨𝐾, 1o⟩] ~QQ → (*Q‘[⟨𝐾, 1o⟩] ~Q ) ∈ Q)
17 nqprlu 7375 . . . . . . 7 ((*Q‘[⟨𝐾, 1o⟩] ~Q ) ∈ Q → ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩ ∈ P)
1815, 16, 173syl 17 . . . . . 6 (𝜑 → ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩ ∈ P)
19 ltaprg 7447 . . . . . 6 ((⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩ ∈ P𝑄P ∧ (𝐹𝐾) ∈ P) → (⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩<P 𝑄 ↔ ((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩)<P ((𝐹𝐾) +P 𝑄)))
2018, 11, 10, 19syl3anc 1217 . . . . 5 (𝜑 → (⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩<P 𝑄 ↔ ((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩)<P ((𝐹𝐾) +P 𝑄)))
2113, 20mpbid 146 . . . 4 (𝜑 → ((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩)<P ((𝐹𝐾) +P 𝑄))
22 opeq1 3709 . . . . . . . . . . . 12 (𝑟 = 𝐾 → ⟨𝑟, 1o⟩ = ⟨𝐾, 1o⟩)
2322eceq1d 6469 . . . . . . . . . . 11 (𝑟 = 𝐾 → [⟨𝑟, 1o⟩] ~Q = [⟨𝐾, 1o⟩] ~Q )
2423fveq2d 5429 . . . . . . . . . 10 (𝑟 = 𝐾 → (*Q‘[⟨𝑟, 1o⟩] ~Q ) = (*Q‘[⟨𝐾, 1o⟩] ~Q ))
2524breq2d 3945 . . . . . . . . 9 (𝑟 = 𝐾 → (𝑙 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q ) ↔ 𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )))
2625abbidv 2258 . . . . . . . 8 (𝑟 = 𝐾 → {𝑙𝑙 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )} = {𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )})
2724breq1d 3943 . . . . . . . . 9 (𝑟 = 𝐾 → ((*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑢 ↔ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢))
2827abbidv 2258 . . . . . . . 8 (𝑟 = 𝐾 → {𝑢 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑢} = {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢})
2926, 28opeq12d 3717 . . . . . . 7 (𝑟 = 𝐾 → ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑢}⟩ = ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩)
3029oveq2d 5794 . . . . . 6 (𝑟 = 𝐾 → ((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑢}⟩) = ((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩))
31 fveq2 5425 . . . . . . 7 (𝑟 = 𝐾 → (𝐹𝑟) = (𝐹𝐾))
3231oveq1d 5793 . . . . . 6 (𝑟 = 𝐾 → ((𝐹𝑟) +P 𝑄) = ((𝐹𝐾) +P 𝑄))
3330, 32breq12d 3946 . . . . 5 (𝑟 = 𝐾 → (((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑢}⟩)<P ((𝐹𝑟) +P 𝑄) ↔ ((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩)<P ((𝐹𝐾) +P 𝑄)))
3433rspcev 2790 . . . 4 ((𝐾N ∧ ((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩)<P ((𝐹𝐾) +P 𝑄)) → ∃𝑟N ((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑢}⟩)<P ((𝐹𝑟) +P 𝑄))
359, 21, 34syl2anc 409 . . 3 (𝜑 → ∃𝑟N ((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑢}⟩)<P ((𝐹𝑟) +P 𝑄))
36 breq1 3936 . . . . . . . 8 (𝑙 = 𝑝 → (𝑙 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q ) ↔ 𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )))
3736cbvabv 2265 . . . . . . 7 {𝑙𝑙 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )} = {𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}
38 breq2 3937 . . . . . . . 8 (𝑢 = 𝑞 → ((*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑢 ↔ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞))
3938cbvabv 2265 . . . . . . 7 {𝑢 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑢} = {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}
4037, 39opeq12i 3714 . . . . . 6 ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑢}⟩ = ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩
4140oveq2i 5789 . . . . 5 ((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑢}⟩) = ((𝐹𝐾) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)
4241breq1i 3940 . . . 4 (((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑢}⟩)<P ((𝐹𝑟) +P 𝑄) ↔ ((𝐹𝐾) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑟) +P 𝑄))
4342rexbii 2443 . . 3 (∃𝑟N ((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑢}⟩)<P ((𝐹𝑟) +P 𝑄) ↔ ∃𝑟N ((𝐹𝐾) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑟) +P 𝑄))
4435, 43sylib 121 . 2 (𝜑 → ∃𝑟N ((𝐹𝐾) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑟) +P 𝑄))
451, 2, 3, 4, 10, 11, 44caucvgprprlemaddq 7536 1 (𝜑 → (𝐹𝐾)<P (𝐿 +P 𝑄))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1332  wcel 1481  {cab 2126  wral 2417  wrex 2418  {crab 2421  cop 3531   class class class wbr 3933  wf 5123  cfv 5127  (class class class)co 5778  1oc1o 6310  [cec 6431  Ncnpi 7100   <N clti 7103   ~Q ceq 7107  Qcnq 7108   +Q cplq 7110  *Qcrq 7112   <Q cltq 7113  Pcnp 7119   +P cpp 7121  <P cltp 7123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4047  ax-sep 4050  ax-nul 4058  ax-pow 4102  ax-pr 4135  ax-un 4359  ax-setind 4456  ax-iinf 4506
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2689  df-sbc 2911  df-csb 3005  df-dif 3074  df-un 3076  df-in 3078  df-ss 3085  df-nul 3365  df-pw 3513  df-sn 3534  df-pr 3535  df-op 3537  df-uni 3741  df-int 3776  df-iun 3819  df-br 3934  df-opab 3994  df-mpt 3995  df-tr 4031  df-eprel 4215  df-id 4219  df-po 4222  df-iso 4223  df-iord 4292  df-on 4294  df-suc 4297  df-iom 4509  df-xp 4549  df-rel 4550  df-cnv 4551  df-co 4552  df-dm 4553  df-rn 4554  df-res 4555  df-ima 4556  df-iota 5092  df-fun 5129  df-fn 5130  df-f 5131  df-f1 5132  df-fo 5133  df-f1o 5134  df-fv 5135  df-ov 5781  df-oprab 5782  df-mpo 5783  df-1st 6042  df-2nd 6043  df-recs 6206  df-irdg 6271  df-1o 6317  df-2o 6318  df-oadd 6321  df-omul 6322  df-er 6433  df-ec 6435  df-qs 6439  df-ni 7132  df-pli 7133  df-mi 7134  df-lti 7135  df-plpq 7172  df-mpq 7173  df-enq 7175  df-nqqs 7176  df-plqqs 7177  df-mqqs 7178  df-1nqqs 7179  df-rq 7180  df-ltnqqs 7181  df-enq0 7252  df-nq0 7253  df-0nq0 7254  df-plq0 7255  df-mq0 7256  df-inp 7294  df-iplp 7296  df-iltp 7298
This theorem is referenced by:  caucvgprprlemlim  7539
  Copyright terms: Public domain W3C validator