Step | Hyp | Ref
| Expression |
1 | | caucvgprpr.f |
. 2
⊢ (𝜑 → 𝐹:N⟶P) |
2 | | caucvgprpr.cau |
. 2
⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N
𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P ⟨{𝑙 ∣ 𝑙 <Q
(*Q‘[⟨𝑛, 1o⟩]
~Q )}, {𝑢 ∣
(*Q‘[⟨𝑛, 1o⟩]
~Q ) <Q 𝑢}⟩) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P ⟨{𝑙 ∣ 𝑙 <Q
(*Q‘[⟨𝑛, 1o⟩]
~Q )}, {𝑢 ∣
(*Q‘[⟨𝑛, 1o⟩]
~Q ) <Q 𝑢}⟩)))) |
3 | | caucvgprpr.bnd |
. 2
⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) |
4 | | caucvgprpr.lim |
. 2
⊢ 𝐿 = ⟨{𝑙 ∈ Q ∣ ∃𝑟 ∈ N
⟨{𝑝 ∣ 𝑝 <Q
(𝑙
+Q (*Q‘[⟨𝑟, 1o⟩]
~Q ))}, {𝑞 ∣ (𝑙 +Q
(*Q‘[⟨𝑟, 1o⟩]
~Q )) <Q 𝑞}⟩<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝑟, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝑟, 1o⟩]
~Q ) <Q 𝑞}⟩)<P
⟨{𝑝 ∣ 𝑝 <Q
𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}⟩}⟩ |
5 | | caucvgprprlemlim.jk |
. . . . 5
⊢ (𝜑 → 𝐽 <N 𝐾) |
6 | | ltrelpi 7323 |
. . . . . 6
⊢
<N ⊆ (N ×
N) |
7 | 6 | brel 4679 |
. . . . 5
⊢ (𝐽 <N
𝐾 → (𝐽 ∈ N ∧ 𝐾 ∈
N)) |
8 | 5, 7 | syl 14 |
. . . 4
⊢ (𝜑 → (𝐽 ∈ N ∧ 𝐾 ∈
N)) |
9 | 8 | simprd 114 |
. . 3
⊢ (𝜑 → 𝐾 ∈ N) |
10 | 1, 9 | ffvelcdmd 5653 |
. 2
⊢ (𝜑 → (𝐹‘𝐾) ∈ P) |
11 | | caucvgprprlemlim.q |
. 2
⊢ (𝜑 → 𝑄 ∈ P) |
12 | | caucvgprprlemlim.jkq |
. . . . . 6
⊢ (𝜑 → ⟨{𝑙 ∣ 𝑙 <Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )}, {𝑢 ∣
(*Q‘[⟨𝐽, 1o⟩]
~Q ) <Q 𝑢}⟩<P 𝑄) |
13 | 5, 12 | caucvgprprlemk 7682 |
. . . . 5
⊢ (𝜑 → ⟨{𝑙 ∣ 𝑙 <Q
(*Q‘[⟨𝐾, 1o⟩]
~Q )}, {𝑢 ∣
(*Q‘[⟨𝐾, 1o⟩]
~Q ) <Q 𝑢}⟩<P 𝑄) |
14 | | nnnq 7421 |
. . . . . . . 8
⊢ (𝐾 ∈ N →
[⟨𝐾,
1o⟩] ~Q ∈
Q) |
15 | 9, 14 | syl 14 |
. . . . . . 7
⊢ (𝜑 → [⟨𝐾, 1o⟩]
~Q ∈ Q) |
16 | | recclnq 7391 |
. . . . . . 7
⊢
([⟨𝐾,
1o⟩] ~Q ∈ Q →
(*Q‘[⟨𝐾, 1o⟩]
~Q ) ∈ Q) |
17 | | nqprlu 7546 |
. . . . . . 7
⊢
((*Q‘[⟨𝐾, 1o⟩]
~Q ) ∈ Q → ⟨{𝑙 ∣ 𝑙 <Q
(*Q‘[⟨𝐾, 1o⟩]
~Q )}, {𝑢 ∣
(*Q‘[⟨𝐾, 1o⟩]
~Q ) <Q 𝑢}⟩ ∈
P) |
18 | 15, 16, 17 | 3syl 17 |
. . . . . 6
⊢ (𝜑 → ⟨{𝑙 ∣ 𝑙 <Q
(*Q‘[⟨𝐾, 1o⟩]
~Q )}, {𝑢 ∣
(*Q‘[⟨𝐾, 1o⟩]
~Q ) <Q 𝑢}⟩ ∈
P) |
19 | | ltaprg 7618 |
. . . . . 6
⊢
((⟨{𝑙 ∣
𝑙
<Q (*Q‘[⟨𝐾, 1o⟩]
~Q )}, {𝑢 ∣
(*Q‘[⟨𝐾, 1o⟩]
~Q ) <Q 𝑢}⟩ ∈ P ∧ 𝑄 ∈ P ∧
(𝐹‘𝐾) ∈ P) →
(⟨{𝑙 ∣ 𝑙 <Q
(*Q‘[⟨𝐾, 1o⟩]
~Q )}, {𝑢 ∣
(*Q‘[⟨𝐾, 1o⟩]
~Q ) <Q 𝑢}⟩<P 𝑄 ↔ ((𝐹‘𝐾) +P ⟨{𝑙 ∣ 𝑙 <Q
(*Q‘[⟨𝐾, 1o⟩]
~Q )}, {𝑢 ∣
(*Q‘[⟨𝐾, 1o⟩]
~Q ) <Q 𝑢}⟩)<P
((𝐹‘𝐾) +P 𝑄))) |
20 | 18, 11, 10, 19 | syl3anc 1238 |
. . . . 5
⊢ (𝜑 → (⟨{𝑙 ∣ 𝑙 <Q
(*Q‘[⟨𝐾, 1o⟩]
~Q )}, {𝑢 ∣
(*Q‘[⟨𝐾, 1o⟩]
~Q ) <Q 𝑢}⟩<P 𝑄 ↔ ((𝐹‘𝐾) +P ⟨{𝑙 ∣ 𝑙 <Q
(*Q‘[⟨𝐾, 1o⟩]
~Q )}, {𝑢 ∣
(*Q‘[⟨𝐾, 1o⟩]
~Q ) <Q 𝑢}⟩)<P
((𝐹‘𝐾) +P 𝑄))) |
21 | 13, 20 | mpbid 147 |
. . . 4
⊢ (𝜑 → ((𝐹‘𝐾) +P ⟨{𝑙 ∣ 𝑙 <Q
(*Q‘[⟨𝐾, 1o⟩]
~Q )}, {𝑢 ∣
(*Q‘[⟨𝐾, 1o⟩]
~Q ) <Q 𝑢}⟩)<P
((𝐹‘𝐾) +P 𝑄)) |
22 | | opeq1 3779 |
. . . . . . . . . . . 12
⊢ (𝑟 = 𝐾 → ⟨𝑟, 1o⟩ = ⟨𝐾,
1o⟩) |
23 | 22 | eceq1d 6571 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝐾 → [⟨𝑟, 1o⟩]
~Q = [⟨𝐾, 1o⟩]
~Q ) |
24 | 23 | fveq2d 5520 |
. . . . . . . . . 10
⊢ (𝑟 = 𝐾 →
(*Q‘[⟨𝑟, 1o⟩]
~Q ) = (*Q‘[⟨𝐾, 1o⟩]
~Q )) |
25 | 24 | breq2d 4016 |
. . . . . . . . 9
⊢ (𝑟 = 𝐾 → (𝑙 <Q
(*Q‘[⟨𝑟, 1o⟩]
~Q ) ↔ 𝑙 <Q
(*Q‘[⟨𝐾, 1o⟩]
~Q ))) |
26 | 25 | abbidv 2295 |
. . . . . . . 8
⊢ (𝑟 = 𝐾 → {𝑙 ∣ 𝑙 <Q
(*Q‘[⟨𝑟, 1o⟩]
~Q )} = {𝑙 ∣ 𝑙 <Q
(*Q‘[⟨𝐾, 1o⟩]
~Q )}) |
27 | 24 | breq1d 4014 |
. . . . . . . . 9
⊢ (𝑟 = 𝐾 →
((*Q‘[⟨𝑟, 1o⟩]
~Q ) <Q 𝑢 ↔
(*Q‘[⟨𝐾, 1o⟩]
~Q ) <Q 𝑢)) |
28 | 27 | abbidv 2295 |
. . . . . . . 8
⊢ (𝑟 = 𝐾 → {𝑢 ∣
(*Q‘[⟨𝑟, 1o⟩]
~Q ) <Q 𝑢} = {𝑢 ∣
(*Q‘[⟨𝐾, 1o⟩]
~Q ) <Q 𝑢}) |
29 | 26, 28 | opeq12d 3787 |
. . . . . . 7
⊢ (𝑟 = 𝐾 → ⟨{𝑙 ∣ 𝑙 <Q
(*Q‘[⟨𝑟, 1o⟩]
~Q )}, {𝑢 ∣
(*Q‘[⟨𝑟, 1o⟩]
~Q ) <Q 𝑢}⟩ = ⟨{𝑙 ∣ 𝑙 <Q
(*Q‘[⟨𝐾, 1o⟩]
~Q )}, {𝑢 ∣
(*Q‘[⟨𝐾, 1o⟩]
~Q ) <Q 𝑢}⟩) |
30 | 29 | oveq2d 5891 |
. . . . . 6
⊢ (𝑟 = 𝐾 → ((𝐹‘𝐾) +P ⟨{𝑙 ∣ 𝑙 <Q
(*Q‘[⟨𝑟, 1o⟩]
~Q )}, {𝑢 ∣
(*Q‘[⟨𝑟, 1o⟩]
~Q ) <Q 𝑢}⟩) = ((𝐹‘𝐾) +P ⟨{𝑙 ∣ 𝑙 <Q
(*Q‘[⟨𝐾, 1o⟩]
~Q )}, {𝑢 ∣
(*Q‘[⟨𝐾, 1o⟩]
~Q ) <Q 𝑢}⟩)) |
31 | | fveq2 5516 |
. . . . . . 7
⊢ (𝑟 = 𝐾 → (𝐹‘𝑟) = (𝐹‘𝐾)) |
32 | 31 | oveq1d 5890 |
. . . . . 6
⊢ (𝑟 = 𝐾 → ((𝐹‘𝑟) +P 𝑄) = ((𝐹‘𝐾) +P 𝑄)) |
33 | 30, 32 | breq12d 4017 |
. . . . 5
⊢ (𝑟 = 𝐾 → (((𝐹‘𝐾) +P ⟨{𝑙 ∣ 𝑙 <Q
(*Q‘[⟨𝑟, 1o⟩]
~Q )}, {𝑢 ∣
(*Q‘[⟨𝑟, 1o⟩]
~Q ) <Q 𝑢}⟩)<P
((𝐹‘𝑟) +P
𝑄) ↔ ((𝐹‘𝐾) +P ⟨{𝑙 ∣ 𝑙 <Q
(*Q‘[⟨𝐾, 1o⟩]
~Q )}, {𝑢 ∣
(*Q‘[⟨𝐾, 1o⟩]
~Q ) <Q 𝑢}⟩)<P
((𝐹‘𝐾) +P 𝑄))) |
34 | 33 | rspcev 2842 |
. . . 4
⊢ ((𝐾 ∈ N ∧
((𝐹‘𝐾) +P ⟨{𝑙 ∣ 𝑙 <Q
(*Q‘[⟨𝐾, 1o⟩]
~Q )}, {𝑢 ∣
(*Q‘[⟨𝐾, 1o⟩]
~Q ) <Q 𝑢}⟩)<P
((𝐹‘𝐾) +P 𝑄)) → ∃𝑟 ∈ N ((𝐹‘𝐾) +P ⟨{𝑙 ∣ 𝑙 <Q
(*Q‘[⟨𝑟, 1o⟩]
~Q )}, {𝑢 ∣
(*Q‘[⟨𝑟, 1o⟩]
~Q ) <Q 𝑢}⟩)<P
((𝐹‘𝑟) +P
𝑄)) |
35 | 9, 21, 34 | syl2anc 411 |
. . 3
⊢ (𝜑 → ∃𝑟 ∈ N ((𝐹‘𝐾) +P ⟨{𝑙 ∣ 𝑙 <Q
(*Q‘[⟨𝑟, 1o⟩]
~Q )}, {𝑢 ∣
(*Q‘[⟨𝑟, 1o⟩]
~Q ) <Q 𝑢}⟩)<P
((𝐹‘𝑟) +P
𝑄)) |
36 | | breq1 4007 |
. . . . . . . 8
⊢ (𝑙 = 𝑝 → (𝑙 <Q
(*Q‘[⟨𝑟, 1o⟩]
~Q ) ↔ 𝑝 <Q
(*Q‘[⟨𝑟, 1o⟩]
~Q ))) |
37 | 36 | cbvabv 2302 |
. . . . . . 7
⊢ {𝑙 ∣ 𝑙 <Q
(*Q‘[⟨𝑟, 1o⟩]
~Q )} = {𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝑟, 1o⟩]
~Q )} |
38 | | breq2 4008 |
. . . . . . . 8
⊢ (𝑢 = 𝑞 →
((*Q‘[⟨𝑟, 1o⟩]
~Q ) <Q 𝑢 ↔
(*Q‘[⟨𝑟, 1o⟩]
~Q ) <Q 𝑞)) |
39 | 38 | cbvabv 2302 |
. . . . . . 7
⊢ {𝑢 ∣
(*Q‘[⟨𝑟, 1o⟩]
~Q ) <Q 𝑢} = {𝑞 ∣
(*Q‘[⟨𝑟, 1o⟩]
~Q ) <Q 𝑞} |
40 | 37, 39 | opeq12i 3784 |
. . . . . 6
⊢
⟨{𝑙 ∣
𝑙
<Q (*Q‘[⟨𝑟, 1o⟩]
~Q )}, {𝑢 ∣
(*Q‘[⟨𝑟, 1o⟩]
~Q ) <Q 𝑢}⟩ = ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝑟, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝑟, 1o⟩]
~Q ) <Q 𝑞}⟩ |
41 | 40 | oveq2i 5886 |
. . . . 5
⊢ ((𝐹‘𝐾) +P ⟨{𝑙 ∣ 𝑙 <Q
(*Q‘[⟨𝑟, 1o⟩]
~Q )}, {𝑢 ∣
(*Q‘[⟨𝑟, 1o⟩]
~Q ) <Q 𝑢}⟩) = ((𝐹‘𝐾) +P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝑟, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝑟, 1o⟩]
~Q ) <Q 𝑞}⟩) |
42 | 41 | breq1i 4011 |
. . . 4
⊢ (((𝐹‘𝐾) +P ⟨{𝑙 ∣ 𝑙 <Q
(*Q‘[⟨𝑟, 1o⟩]
~Q )}, {𝑢 ∣
(*Q‘[⟨𝑟, 1o⟩]
~Q ) <Q 𝑢}⟩)<P
((𝐹‘𝑟) +P
𝑄) ↔ ((𝐹‘𝐾) +P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝑟, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝑟, 1o⟩]
~Q ) <Q 𝑞}⟩)<P
((𝐹‘𝑟) +P
𝑄)) |
43 | 42 | rexbii 2484 |
. . 3
⊢
(∃𝑟 ∈
N ((𝐹‘𝐾) +P ⟨{𝑙 ∣ 𝑙 <Q
(*Q‘[⟨𝑟, 1o⟩]
~Q )}, {𝑢 ∣
(*Q‘[⟨𝑟, 1o⟩]
~Q ) <Q 𝑢}⟩)<P
((𝐹‘𝑟) +P
𝑄) ↔ ∃𝑟 ∈ N ((𝐹‘𝐾) +P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝑟, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝑟, 1o⟩]
~Q ) <Q 𝑞}⟩)<P
((𝐹‘𝑟) +P
𝑄)) |
44 | 35, 43 | sylib 122 |
. 2
⊢ (𝜑 → ∃𝑟 ∈ N ((𝐹‘𝐾) +P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝑟, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝑟, 1o⟩]
~Q ) <Q 𝑞}⟩)<P
((𝐹‘𝑟) +P
𝑄)) |
45 | 1, 2, 3, 4, 10, 11, 44 | caucvgprprlemaddq 7707 |
1
⊢ (𝜑 → (𝐹‘𝐾)<P (𝐿 +P
𝑄)) |