Proof of Theorem caucvgprprlem1
| Step | Hyp | Ref
| Expression |
| 1 | | caucvgprpr.f |
. 2
⊢ (𝜑 → 𝐹:N⟶P) |
| 2 | | caucvgprpr.cau |
. 2
⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N
𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉)))) |
| 3 | | caucvgprpr.bnd |
. 2
⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) |
| 4 | | caucvgprpr.lim |
. 2
⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N
〈{𝑝 ∣ 𝑝 <Q
(𝑙
+Q (*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 |
| 5 | | caucvgprprlemlim.jk |
. . . . 5
⊢ (𝜑 → 𝐽 <N 𝐾) |
| 6 | | ltrelpi 7391 |
. . . . . 6
⊢
<N ⊆ (N ×
N) |
| 7 | 6 | brel 4715 |
. . . . 5
⊢ (𝐽 <N
𝐾 → (𝐽 ∈ N ∧ 𝐾 ∈
N)) |
| 8 | 5, 7 | syl 14 |
. . . 4
⊢ (𝜑 → (𝐽 ∈ N ∧ 𝐾 ∈
N)) |
| 9 | 8 | simprd 114 |
. . 3
⊢ (𝜑 → 𝐾 ∈ N) |
| 10 | 1, 9 | ffvelcdmd 5698 |
. 2
⊢ (𝜑 → (𝐹‘𝐾) ∈ P) |
| 11 | | caucvgprprlemlim.q |
. 2
⊢ (𝜑 → 𝑄 ∈ P) |
| 12 | | caucvgprprlemlim.jkq |
. . . . . 6
⊢ (𝜑 → 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑢}〉<P 𝑄) |
| 13 | 5, 12 | caucvgprprlemk 7750 |
. . . . 5
⊢ (𝜑 → 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐾, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐾, 1o〉]
~Q ) <Q 𝑢}〉<P 𝑄) |
| 14 | | nnnq 7489 |
. . . . . . . 8
⊢ (𝐾 ∈ N →
[〈𝐾,
1o〉] ~Q ∈
Q) |
| 15 | 9, 14 | syl 14 |
. . . . . . 7
⊢ (𝜑 → [〈𝐾, 1o〉]
~Q ∈ Q) |
| 16 | | recclnq 7459 |
. . . . . . 7
⊢
([〈𝐾,
1o〉] ~Q ∈ Q →
(*Q‘[〈𝐾, 1o〉]
~Q ) ∈ Q) |
| 17 | | nqprlu 7614 |
. . . . . . 7
⊢
((*Q‘[〈𝐾, 1o〉]
~Q ) ∈ Q → 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐾, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐾, 1o〉]
~Q ) <Q 𝑢}〉 ∈
P) |
| 18 | 15, 16, 17 | 3syl 17 |
. . . . . 6
⊢ (𝜑 → 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐾, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐾, 1o〉]
~Q ) <Q 𝑢}〉 ∈
P) |
| 19 | | ltaprg 7686 |
. . . . . 6
⊢
((〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝐾, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐾, 1o〉]
~Q ) <Q 𝑢}〉 ∈ P ∧ 𝑄 ∈ P ∧
(𝐹‘𝐾) ∈ P) →
(〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐾, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐾, 1o〉]
~Q ) <Q 𝑢}〉<P 𝑄 ↔ ((𝐹‘𝐾) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐾, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐾, 1o〉]
~Q ) <Q 𝑢}〉)<P
((𝐹‘𝐾) +P 𝑄))) |
| 20 | 18, 11, 10, 19 | syl3anc 1249 |
. . . . 5
⊢ (𝜑 → (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐾, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐾, 1o〉]
~Q ) <Q 𝑢}〉<P 𝑄 ↔ ((𝐹‘𝐾) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐾, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐾, 1o〉]
~Q ) <Q 𝑢}〉)<P
((𝐹‘𝐾) +P 𝑄))) |
| 21 | 13, 20 | mpbid 147 |
. . . 4
⊢ (𝜑 → ((𝐹‘𝐾) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐾, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐾, 1o〉]
~Q ) <Q 𝑢}〉)<P
((𝐹‘𝐾) +P 𝑄)) |
| 22 | | opeq1 3808 |
. . . . . . . . . . . 12
⊢ (𝑟 = 𝐾 → 〈𝑟, 1o〉 = 〈𝐾,
1o〉) |
| 23 | 22 | eceq1d 6628 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝐾 → [〈𝑟, 1o〉]
~Q = [〈𝐾, 1o〉]
~Q ) |
| 24 | 23 | fveq2d 5562 |
. . . . . . . . . 10
⊢ (𝑟 = 𝐾 →
(*Q‘[〈𝑟, 1o〉]
~Q ) = (*Q‘[〈𝐾, 1o〉]
~Q )) |
| 25 | 24 | breq2d 4045 |
. . . . . . . . 9
⊢ (𝑟 = 𝐾 → (𝑙 <Q
(*Q‘[〈𝑟, 1o〉]
~Q ) ↔ 𝑙 <Q
(*Q‘[〈𝐾, 1o〉]
~Q ))) |
| 26 | 25 | abbidv 2314 |
. . . . . . . 8
⊢ (𝑟 = 𝐾 → {𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )} = {𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐾, 1o〉]
~Q )}) |
| 27 | 24 | breq1d 4043 |
. . . . . . . . 9
⊢ (𝑟 = 𝐾 →
((*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑢 ↔
(*Q‘[〈𝐾, 1o〉]
~Q ) <Q 𝑢)) |
| 28 | 27 | abbidv 2314 |
. . . . . . . 8
⊢ (𝑟 = 𝐾 → {𝑢 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑢} = {𝑢 ∣
(*Q‘[〈𝐾, 1o〉]
~Q ) <Q 𝑢}) |
| 29 | 26, 28 | opeq12d 3816 |
. . . . . . 7
⊢ (𝑟 = 𝐾 → 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑢}〉 = 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐾, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐾, 1o〉]
~Q ) <Q 𝑢}〉) |
| 30 | 29 | oveq2d 5938 |
. . . . . 6
⊢ (𝑟 = 𝐾 → ((𝐹‘𝐾) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑢}〉) = ((𝐹‘𝐾) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐾, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐾, 1o〉]
~Q ) <Q 𝑢}〉)) |
| 31 | | fveq2 5558 |
. . . . . . 7
⊢ (𝑟 = 𝐾 → (𝐹‘𝑟) = (𝐹‘𝐾)) |
| 32 | 31 | oveq1d 5937 |
. . . . . 6
⊢ (𝑟 = 𝐾 → ((𝐹‘𝑟) +P 𝑄) = ((𝐹‘𝐾) +P 𝑄)) |
| 33 | 30, 32 | breq12d 4046 |
. . . . 5
⊢ (𝑟 = 𝐾 → (((𝐹‘𝐾) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑢}〉)<P
((𝐹‘𝑟) +P
𝑄) ↔ ((𝐹‘𝐾) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐾, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐾, 1o〉]
~Q ) <Q 𝑢}〉)<P
((𝐹‘𝐾) +P 𝑄))) |
| 34 | 33 | rspcev 2868 |
. . . 4
⊢ ((𝐾 ∈ N ∧
((𝐹‘𝐾) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐾, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐾, 1o〉]
~Q ) <Q 𝑢}〉)<P
((𝐹‘𝐾) +P 𝑄)) → ∃𝑟 ∈ N ((𝐹‘𝐾) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑢}〉)<P
((𝐹‘𝑟) +P
𝑄)) |
| 35 | 9, 21, 34 | syl2anc 411 |
. . 3
⊢ (𝜑 → ∃𝑟 ∈ N ((𝐹‘𝐾) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑢}〉)<P
((𝐹‘𝑟) +P
𝑄)) |
| 36 | | breq1 4036 |
. . . . . . . 8
⊢ (𝑙 = 𝑝 → (𝑙 <Q
(*Q‘[〈𝑟, 1o〉]
~Q ) ↔ 𝑝 <Q
(*Q‘[〈𝑟, 1o〉]
~Q ))) |
| 37 | 36 | cbvabv 2321 |
. . . . . . 7
⊢ {𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )} = {𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )} |
| 38 | | breq2 4037 |
. . . . . . . 8
⊢ (𝑢 = 𝑞 →
((*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑢 ↔
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑞)) |
| 39 | 38 | cbvabv 2321 |
. . . . . . 7
⊢ {𝑢 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑢} = {𝑞 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑞} |
| 40 | 37, 39 | opeq12i 3813 |
. . . . . 6
⊢
〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑢}〉 = 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑞}〉 |
| 41 | 40 | oveq2i 5933 |
. . . . 5
⊢ ((𝐹‘𝐾) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑢}〉) = ((𝐹‘𝐾) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑞}〉) |
| 42 | 41 | breq1i 4040 |
. . . 4
⊢ (((𝐹‘𝐾) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑢}〉)<P
((𝐹‘𝑟) +P
𝑄) ↔ ((𝐹‘𝐾) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑞}〉)<P
((𝐹‘𝑟) +P
𝑄)) |
| 43 | 42 | rexbii 2504 |
. . 3
⊢
(∃𝑟 ∈
N ((𝐹‘𝐾) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑢}〉)<P
((𝐹‘𝑟) +P
𝑄) ↔ ∃𝑟 ∈ N ((𝐹‘𝐾) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑞}〉)<P
((𝐹‘𝑟) +P
𝑄)) |
| 44 | 35, 43 | sylib 122 |
. 2
⊢ (𝜑 → ∃𝑟 ∈ N ((𝐹‘𝐾) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑞}〉)<P
((𝐹‘𝑟) +P
𝑄)) |
| 45 | 1, 2, 3, 4, 10, 11, 44 | caucvgprprlemaddq 7775 |
1
⊢ (𝜑 → (𝐹‘𝐾)<P (𝐿 +P
𝑄)) |